Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blind und doch nicht blind

29.04.2013
Fliegen nutzen unterschiedliche Nervenzell-Schaltkreise um Bewegungs- und Positionsinformationen zu verarbeiten

Wenn eine Mücke sich dem menschlichen Ohr nähert oder eine Biene die nächste Blüte ansteuert, sind zwei Dinge von Bedeutung: Die Insekten müssen ihr Ziel fixieren und Kursabweichungen, zum Beispiel durch einen Windstoß, korrigieren können. Wie verarbeitet das Gehirn diese unterschiedlichen Situationen, damit beide Verhalten möglich sind?


Im Versuch sehen Fruchtfliegen ein sich drehendes Streifenmuster. Die Fliege selbst ist stationär, unter ihren Beinen befindet sich jedoch ein auf einem Luftstrom gelagerter Styroporball. Über zwei Kameras wird die Drehung des Styroporballs aufgenommen, wodurch das Laufverhalten der Fliege präzise rekonstruiert werden kann. Werden nun einzelne Nervenzellen im visuellen System der Fliege ausgeschaltet, so zeigt sich der Einfluss dieser Zellen in der fehlenden Reaktion der Tiere auf das Streifenmuster. © MPI für Neurobiologie

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München haben in Verhaltensexperimenten gezeigt, dass beide Verhalten im Gehirn der Fruchtfliege Drosophila über separate Schaltkreise gesteuert werden. Eines dieser neuronalen Netzwerke verarbeitet Bewegungsinformationen der Umwelt und dient der Fliege zur Kursstabilisierung. Das andere ist für das Ermitteln der Position eines Objekts zuständig und wird zur Objekt-Fixierung benutzt.

Dreht sich ein Zylinder mit senkrechten Streifen um ein Insekt herum, so dreht sich das Tier mit den Streifen mit. Dieses angeborene Verhalten wird als optomotorische Reaktion bezeichnet. Das Experiment entspricht dabei einem natürlichen Szenario: Verschiebt zum Beispiel ein Windstoß eine fliegende Fliege nach rechts, so bewegt sich aus der Perspektive der Fliege die Umgebung nach links an ihren Augen vorbei. Die optomotorische Reaktion führt folglich zu einer Kompensation des Windstoßes und bringt die Fliege wieder auf Kurs. Wissenschaftler vermuten schon seit langem, dass die Nervenzellen, die dieses Verhalten steuern, in der Lobula-Platte des Fliegengehirns zu finden sind. Ob diese Zellen jedoch notwendig sind, um die beobachteten Verhalten zu steuern, das blieb bisher unklar.

Wie Bewegungsinformationen im Fliegenhirn verarbeitet werden, das untersuchen Alexander Borst und seine Abteilung am Max-Planck-Institut für Neurobiologie. Um herauszufinden, ob die Lobula-Platte bei der optomotorischen Reaktion eine Rolle spielt, entwickelten die Neurobiologen eine Verhaltensapparatur: In einer virtuellen Umgebung präsentierten sie Fliegen ein rotierendes Streifenmuster, worauf diese eine deutliche optomotorische Reaktion zeigten. Blockierten die Wissenschaftler jedoch die Nervenzellen, von denen die Lobula-Platte ihre Informationen erhält, so war das Verhalten vollständig verschwunden. Die Fliegen waren somit bewegungsblind. Die Experimente zeigen, dass die Lobula-Platte ein notwendiges Element für die Kursstabilisierung der Fliege ist.

In der Natur müssen Fliegen jedoch neben Bewegungen auch andere Dinge verarbeiten können. War dies noch möglich? Als nächstes konzentrierten sich die Neurobiologen daher auf ein anderes, gut dokumentiertes Verhalten von Insekten, die sogenannte Objekt-Fixierung: Wird im Versuch ein einzelner vertikaler Streifen gezeigt, so drehen sich Fliegen auf den Streifen zu und versuchen ihn vor sich zu halten. Dieses Objekt-Fixieren ermöglicht es den Tieren sich einem Objekt zu nähern oder es "im Auge" zu behalten. Im Versuch ließen die Wissenschaftler einen vertikalen Streifen langsam an unterschiedlichen Positionen im Blickfeld der Fliegen erscheinen und wieder verschwinden. Erschien der Streifen auf der rechten Seite der Fliege, drehten sich die Tiere nach rechts, erschien er links, drehten sie sich nach links. Kontrolliert das Bewegungsseh-System dieses Verhalten, dann sollten bewegungsblinde Tiere die Streifen nicht mehr fixieren können. Interessanterweise reagierten bewegungsblinde und Kontroll-Fliegen jedoch absolut gleich.

Die Wissenschaftler schlussfolgerten aus diesen Experimenten, dass es zusätzlich zum Bewegungs-Sehsystem noch ein unabhängiges Positions-Sehsystem geben muss. Bewegt sich ein kleines Objekt im Raum, entstehen lokale Helligkeitsveränderungen. Diese werden vom Positions-Sehsystem erfasst. So können bewegungsblinde Fliegen die Position eines Objekts immer noch erkennen, selbst wenn sie dessen Bewegung nicht mehr sehen.

"Es war sehr aufwändig, den Versuchsaufbau so hinzubekommen, dass die Ergebnisse wasserdicht sind", erzählt Armin Bahl, der Erstautor der Studie. Bisher wurde angenommen, dass Zellen der Lobula-Platte sowohl für das Sehen von Bewegungen als auch für das Fixieren von Objekten zuständig sind. Diese Annahme haben die Wissenschaftler nun widerlegt und bereits wichtige Eigenschaften des Fixierungsverhaltens beschrieben. "Wir wissen noch nicht genau, wo die Zellen des Positions-Sehsystems im Fliegenhirn liegen, doch wir haben schon ein paar gute Kandidaten", sagt Armin Bahl, und beschreibt so, in welche Richtung die Forschung nun weitergehen wird.

Ansprechpartner

Prof. Dr. Alexander Borst,
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon: +49 89 8578-3251
Fax: +49 89 8578-3252
E-Mail: borst@­neuro.mpg.de
Dr. Stefanie Merker,
Max-Planck-Institut für Neurobiologie, Martinsried
Telefon: +49 89 8578-3514
E-Mail: merker@­neuro.mpg.de

Originalpublikation
Armin Bahl, Georg Ammer, Tabea Schilling, Alexander Borst
Object tracking in motion-blind flies
Nature Neuroscience, 28 April 2013

Prof. Dr. Alexander Borst | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7134090/Fliege-Bewegungsinformationen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen