Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blattläuse als Bio-Sensoren

15.03.2016

Haben Pflanzen eine Art Nervensystem? Das ist nicht leicht herauszufinden, weil es keine guten Messmethoden gibt. Würzburger Pflanzenforscher nahmen dafür Blattläuse – und entdeckten, dass Pflanzen auf verschiedene Schädigungen jeweils anders reagieren.

Wenn eine Pflanze mechanisch verletzt oder mit Kälte konfrontiert wird, schickt sie elektrische Impulse durch ihren Körper. In beiden Fällen legen die Signale größere Strecken zurück, und zwar zehn Zentimeter und mehr. Die Signale laufen von den verwundeten oder unterkühlten Stellen in alle anderen Organe, die dann passend reagieren – zum Beispiel indem sie Proteine synthetisieren, die Pflanzen vor Kälte schützen.


Blattläuse stechen zielgenau in die Siebröhren der Pflanzen. Mit ihnen als Bio-Elektroden lassen sich die elektrischen Ströme messen, die dort fließen.

Bild: Jörg Fromm / Christian Wiese


Elektrische Signale (Aktionspotentiale) laufen entlang der Siebröhren durch Blätter und andere Organe der Pflanzen.

(Bild: Rosalia Deeken / Sönke Scherzer /Christian Wiese)

Eine Verletzung verursacht dabei völlig andere elektrische Signale als ein Kälteschock. Das hat der Biophysiker Professor Rainer Hedrich von der Uni Würzburg mit seinem Team an der Modellpflanze Ackerschmalwand (Arabidopsis thaliana) entdeckt.

Eine Schnittverletzung an einem Blatt löst relativ langsame elektrische Impulse aus, die sich über mehrere Minuten hinziehen. Kälteeinwirkung dagegen führte zu schnelleren, etwa 15 Sekunden kurzen Impulsen. „Diese Unterschiede sind für uns ein Hinweis darauf, dass die elektrischen Signale jeweils eine spezielle Bedeutung haben“, so Hedrich.

Elektrische Signale an den Siebröhren

Steckt hinter dieser Sache vielleicht ein ähnliches Prinzip wie beim Nervensystem des Menschen? Dort laufen elektrische Signale an spezialisierten Zellen entlang, überbrücken Synapsen und lösen am Ende eine Reaktion im Körper aus. Pflanzen allerdings haben kein Gehirn, keine Nervenzellen und keine Synapsen. Deshalb gebe es auch keine ernsthaften wissenschaftlichen Gründe, ihnen eine Intelligenz zuzuschreiben und eine „Pflanzenneurobiologie“ zu proklamieren, so Hedrich.

Trotzdem sind mittlerweile viele Wissenschaftler davon überzeugt, dass auch Pflanzen über elektrische Signale Informationen zwischen den Organen ihres Körpers austauschen. Hedrichs Arbeiten an der Venusfliegenfalle haben sogar gezeigt, dass diese fleischfressende Pflanze die gesendeten elektrischen Signale zählen kann und danach Entscheidungen fällt.

Messen lassen sich solche Signale in den Siebröhren. Das ist ein Leitungssystem aus miteinander gekoppelten Zellen, das sich wie ein Gefäßsystem durch die ganze Pflanze zieht und in dem ansonsten Zucker und andere Stoffe transportiert werden.

Messung der Signale bislang schwierig

Sind die Siebröhren das „grüne Stromkabel“ oder sogar eine Art „Nervensystem“ der Pflanze? Diese Einschätzung ist umstritten – was unter anderem einen methodischen Grund hat: Die Wissenschaft verfügt bislang über keine guten Werkzeuge, um in Pflanzen die Weiterleitung elektrischer Signale über größere Entfernungen zu messen.

Rainer Hedrich, Vicenta Salvador-Recatalà und Ingo Dreyer haben nun eine elegante Lösung für dieses Problem gefunden, die sie im Fachmagazin „Trends in Plant Science“ vorstellen: Die Pflanzenwissenschaftler benutzen Blattläuse als Bio-Sensoren. Sie haben dafür eine seit 1964 bekannte Methodik weiterentwickelt, bei der zwischen Blattlaus und Pflanze ein elektrischer Stromkreis erzeugt wird.

Läuse saugen im Dienst der Forschung

Wie das funktioniert? Blattläuse stechen sehr zielgenau in die Siebröhren von Pflanzen und saugen den zuckerhaltigen Saft. Klebt man ihnen einen feinen Draht an den Körper und verbindet ihn mit einer Elektrode, die in der Erde einer eingetopften Pflanze steckt, entsteht zwischen Laus und Pflanze ein Stromkreis. Über ihn lässt sich die Ausbreitung elektrischer Signale in den Siebröhren messen.

Mit dieser Methode gilt es nun viele Fragen zu klären. Wie und wo entstehen die Signale? Welche Informationen transportieren sie? Wo werden sie registriert und welche Reaktionen folgen darauf? Genug Arbeit also für die Würzburger Wissenschaftler – und auch für die Blattläuse, die im Dienst der Forschung stechen und saugen.

„Wir wollen aber auch versuchen, die ‚Bioelektroden‘ zu entlasten“, so Hedrich, „indem wir Gene für Membranpotential-sensitive Reporterproteine im Phloem exprimieren und so die elektrischen Ereignisse des gesamten ‚grünen‘ Schaltkreises einer Pflanze überwachen können.“

“Electrical Wiring and Long-Distance Plant Communication”, Rainer Hedrich, Vicenta Salvador Recatalà, Ingo Dreyer, Trends in Plant Science, 12. Februar 2016, DOI: 10.1016/j.tplants.2016.01.016

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Pflanzenphysiologie und Biophysik), Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Wirkmechanismus von Tumortherapeutikum entdeckt
19.04.2018 | Universität Wien

nachricht Krebsmedikament bei der Arbeit beobachtet
19.04.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics