Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blattläuse als Bio-Sensoren

15.03.2016

Haben Pflanzen eine Art Nervensystem? Das ist nicht leicht herauszufinden, weil es keine guten Messmethoden gibt. Würzburger Pflanzenforscher nahmen dafür Blattläuse – und entdeckten, dass Pflanzen auf verschiedene Schädigungen jeweils anders reagieren.

Wenn eine Pflanze mechanisch verletzt oder mit Kälte konfrontiert wird, schickt sie elektrische Impulse durch ihren Körper. In beiden Fällen legen die Signale größere Strecken zurück, und zwar zehn Zentimeter und mehr. Die Signale laufen von den verwundeten oder unterkühlten Stellen in alle anderen Organe, die dann passend reagieren – zum Beispiel indem sie Proteine synthetisieren, die Pflanzen vor Kälte schützen.


Blattläuse stechen zielgenau in die Siebröhren der Pflanzen. Mit ihnen als Bio-Elektroden lassen sich die elektrischen Ströme messen, die dort fließen.

Bild: Jörg Fromm / Christian Wiese


Elektrische Signale (Aktionspotentiale) laufen entlang der Siebröhren durch Blätter und andere Organe der Pflanzen.

(Bild: Rosalia Deeken / Sönke Scherzer /Christian Wiese)

Eine Verletzung verursacht dabei völlig andere elektrische Signale als ein Kälteschock. Das hat der Biophysiker Professor Rainer Hedrich von der Uni Würzburg mit seinem Team an der Modellpflanze Ackerschmalwand (Arabidopsis thaliana) entdeckt.

Eine Schnittverletzung an einem Blatt löst relativ langsame elektrische Impulse aus, die sich über mehrere Minuten hinziehen. Kälteeinwirkung dagegen führte zu schnelleren, etwa 15 Sekunden kurzen Impulsen. „Diese Unterschiede sind für uns ein Hinweis darauf, dass die elektrischen Signale jeweils eine spezielle Bedeutung haben“, so Hedrich.

Elektrische Signale an den Siebröhren

Steckt hinter dieser Sache vielleicht ein ähnliches Prinzip wie beim Nervensystem des Menschen? Dort laufen elektrische Signale an spezialisierten Zellen entlang, überbrücken Synapsen und lösen am Ende eine Reaktion im Körper aus. Pflanzen allerdings haben kein Gehirn, keine Nervenzellen und keine Synapsen. Deshalb gebe es auch keine ernsthaften wissenschaftlichen Gründe, ihnen eine Intelligenz zuzuschreiben und eine „Pflanzenneurobiologie“ zu proklamieren, so Hedrich.

Trotzdem sind mittlerweile viele Wissenschaftler davon überzeugt, dass auch Pflanzen über elektrische Signale Informationen zwischen den Organen ihres Körpers austauschen. Hedrichs Arbeiten an der Venusfliegenfalle haben sogar gezeigt, dass diese fleischfressende Pflanze die gesendeten elektrischen Signale zählen kann und danach Entscheidungen fällt.

Messen lassen sich solche Signale in den Siebröhren. Das ist ein Leitungssystem aus miteinander gekoppelten Zellen, das sich wie ein Gefäßsystem durch die ganze Pflanze zieht und in dem ansonsten Zucker und andere Stoffe transportiert werden.

Messung der Signale bislang schwierig

Sind die Siebröhren das „grüne Stromkabel“ oder sogar eine Art „Nervensystem“ der Pflanze? Diese Einschätzung ist umstritten – was unter anderem einen methodischen Grund hat: Die Wissenschaft verfügt bislang über keine guten Werkzeuge, um in Pflanzen die Weiterleitung elektrischer Signale über größere Entfernungen zu messen.

Rainer Hedrich, Vicenta Salvador-Recatalà und Ingo Dreyer haben nun eine elegante Lösung für dieses Problem gefunden, die sie im Fachmagazin „Trends in Plant Science“ vorstellen: Die Pflanzenwissenschaftler benutzen Blattläuse als Bio-Sensoren. Sie haben dafür eine seit 1964 bekannte Methodik weiterentwickelt, bei der zwischen Blattlaus und Pflanze ein elektrischer Stromkreis erzeugt wird.

Läuse saugen im Dienst der Forschung

Wie das funktioniert? Blattläuse stechen sehr zielgenau in die Siebröhren von Pflanzen und saugen den zuckerhaltigen Saft. Klebt man ihnen einen feinen Draht an den Körper und verbindet ihn mit einer Elektrode, die in der Erde einer eingetopften Pflanze steckt, entsteht zwischen Laus und Pflanze ein Stromkreis. Über ihn lässt sich die Ausbreitung elektrischer Signale in den Siebröhren messen.

Mit dieser Methode gilt es nun viele Fragen zu klären. Wie und wo entstehen die Signale? Welche Informationen transportieren sie? Wo werden sie registriert und welche Reaktionen folgen darauf? Genug Arbeit also für die Würzburger Wissenschaftler – und auch für die Blattläuse, die im Dienst der Forschung stechen und saugen.

„Wir wollen aber auch versuchen, die ‚Bioelektroden‘ zu entlasten“, so Hedrich, „indem wir Gene für Membranpotential-sensitive Reporterproteine im Phloem exprimieren und so die elektrischen Ereignisse des gesamten ‚grünen‘ Schaltkreises einer Pflanze überwachen können.“

“Electrical Wiring and Long-Distance Plant Communication”, Rainer Hedrich, Vicenta Salvador Recatalà, Ingo Dreyer, Trends in Plant Science, 12. Februar 2016, DOI: 10.1016/j.tplants.2016.01.016

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I (Pflanzenphysiologie und Biophysik), Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Molekulare Störenfriede statt Antibiotika? Wie Proteine Kommunikation zwischen Bakterien verhindern
29.07.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Phantom-Lebensräume in der Tiefsee
29.07.2016 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Bildgebungsmethode macht Sauerstoffgehalt in Gewebe sichtbar

Wie blickt man in den menschlichen Körper, ohne zu operieren? Die Suche nach neuen Lösungen ist nach wie vor eine wichtige Aufgabe der Medizinforschung. Eine der großen Herausforderungen auf diesem Feld ist es, Sauerstoff in Gewebe sichtbar zu machen. Ein Team um Prof. Vasilis Ntziachristos, Inhaber des Lehrstuhls für Biologische Bildgebung an der Technischen Universität München (TUM) und Direktor des Instituts für Biologische und Medizinische Bildgebung am Helmholtz Zentrum München, hat dazu einen neuen Ansatz entwickelt.

Einen Königsweg, um den Sauerstoffgehalt in Gewebe sichtbar zu machen, schien es bislang nicht zu geben. Viele unterschiedliche Verfahren wurden ausprobiert,...

Im Focus: Wie biologische Vielfalt das Ohr fit macht

Göttinger Hörforschung mit neuen Erkenntnissen: Das Ohr setzt Synapsen mit verschiedenen Eigenschaften ein, um unterschiedlich lauten Schall zu verarbeiten. Forschungsergebnisse veröffentlicht in der Fachzeitschrift „Proceedings of the National Academy of Sciences“

Der menschliche Hörsinn verarbeitet einen immensen Bereich an Lautstärken. Wie schafft es das Ohr, etwa über eine Million Schalldruck-Variationen zu...

Im Focus: Ultrakompakter Photodetektor

Der Datenverkehr wächst weltweit. Glasfaserkabel transportieren die Informationen mit Lichtgeschwindigkeit über weite Entfernungen. An ihrem Ziel müssen die optischen Signale jedoch in elektrische Signale gewandelt werden, um im Computer verarbeitet zu werden. Forscher am KIT haben einen neuartigen Photodetektor entwickelt, dessen geringer Platzbedarf neue Maßstäbe setzt: Das Bauteil weist eine Grundfläche von weniger als einem Millionstel Quadratmillimeter auf, ohne die Datenübertragungsrate zu beeinträchtigen, wie sie im Fachmagazin Optica nun berichten. (DOI: 10.1364/OPTICA.3.000741)

Die neuentwickelten Photodetektoren, die weltweit kleinsten Photodetektoren für die optische Datenübertragung, eröffnen die Möglichkeit, durch integrierte...

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: Neues Forschungsnetzwerk für Mikrobiomforschung

Mikroben und Viren haben weitreichenden Einfluss auf die Gesundheit von Mensch und Tier. Die neu gegründete "Austrian Microbiome Initiative" (AMICI) fördert die nationale Mikrobiomforschung und vernetzt MedizinerInnen und ForscherInnen verschiedenster Fachrichtungen zur Nutzung von Synergien.

Bakterien, Archaeen, Pilze, Viren – Milliarden von Mikroorganismen leben in Symbiose in und auf Menschen und Tieren. Diese mikroskopisch kleinen Lebewesen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

BAuA lädt zur Konferenz „Arbeiten im Büro der Zukunft“ ein

29.07.2016 | Veranstaltungen

Fachkongress zu additiven Fertigungsverfahren am 14. und 15. September in Aachen

28.07.2016 | Veranstaltungen

Rheumatologen tagen in Frankfurt: Mehr Forschung für Rheuma gefordert

28.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forschung gibt Impulse für Innovationen

29.07.2016 | Förderungen Preise

Molekulare Störenfriede statt Antibiotika? Wie Proteine Kommunikation zwischen Bakterien verhindern

29.07.2016 | Biowissenschaften Chemie

Internationales Forscherteam deckt grundlegende Eigenschaften des Spin-Seebeck-Effekts auf

29.07.2016 | Physik Astronomie