Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bis aufs Atom: Bakterienskelett in der Nahaufnahme

07.12.2015

Bakterien galten lange Zeit als primitive Gebilde, erst durch modernste Bildgebung hat man ihre innere Feinstruktur entdeckt. Dem Berliner Biophysiker Adam Lange ist es nun gelungen, ganz nah heranzuzoomen: Mit Hilfe einer neuen Technik der Strukturaufklärung konnte er den Grundbaustein eines Bakterienskeletts bis ins atomare Detail darstellen. Das von seinem Team untersuchte Bactofilin kommt nur bei Bakterien vor und könnte somit zum Ansatzpunkt für neue Antibiotika werden.

Das erst vor fünf Jahren entdeckte Bactofilin findet man unter anderem im Bakterium Helicobacter pylori, das für einen Großteil der Magengeschwüre verantwortlich ist.


Mit Hilfe von Bactofilin entwickeln Helicobacter-Bakterien (in blau) ihre typische Schraubenform, die es ihnen erlaubt in die Magenschleimhaut einzudringen. Dort können sie Entzündungen und Geschwüre auslösen. Die Strukturaufklärung von Bactofilin könnte einen Ansatzpunkt für die Entwicklung dringend benötigter neuer antibakterieller Substanzen darstellen. Bild: Barth van Rossum, FMP

Während man früher davon ausging, dass Bakterien über kein stabilisierendes Zytoskelett verfügen, weiß man heute, dass auch die Winzlinge von komplexen Architekturen durchzogen werden, ähnlich wie die größeren und evolutionär gesehen moderneren Zellen von Pflanzen und Tieren.

Durch Bactofilin erhält Helicobacter pylori seine typische schraubenförmige Gestalt, dank der sich das Bakterium durch die schützende Schleimschicht der Mageninnenwand bohren kann. Die einzelnen Bactofilin-Moleküle polymerisieren im Inneren der Bakterien spontan zu feinsten Fasern und höher geordneten Strukturen.

Dabei spielt ein ungewöhnliches Strukturmotiv eine Rolle, wie das Team von Adam Lange am Leibniz-Institut für Molekulare Pharmakologie (FMP) schon in einer Anfang des Jahres veröffentlichten Arbeit herausgefunden hatte. Es handelt sich um die sogenannte Beta-Helix, die man nie zuvor in einem Zytoskelett gefunden hatte.

Die Bactofilin-Moleküle ähneln in ihrer Form Spiralnudeln mit sechs Windungen, bei der Polymerisation lagern sie sich weiter zu langen, extrem dünnen Fasern aneinander.

Die Untersuchung solcher Faserproteine ist eine Herausforderung für Strukturbiologen, da sie sich weder in Flüssigkeit lösen noch auskristallisieren lassen, wie es für die gängigen Untersuchungsmethoden notwendig ist. Die beiden Erstautoren der Arbeit, Chaowei Shi und Pascal Fricke, setzten daher die relativ junge Festkörper-NMR ein, und das außerdem in einer neuen, am FMP entstanden Weiterentwicklung, die eine besonders hohe Auflösung ermöglicht.

NMR steht für „Nuclear magnetic resonance“, auf Deutsch Kernspinresonanz. Diese beruht auf der Eigenschaft mancher Atomkerne, in einem starken äußeren Magnetfeld selbst zu kleinen Magneten zu werden. Anhand ihrer charakteristischen Resonanz mit Radiowellen kann man durch komplizierte Rechenverfahren die Lage der Atome innerhalb von Molekülen ermitteln. Das Besondere an der Festkörper-NMR besteht darin, dass die Probe im Magnetfeld sehr schnell rotiert, um die Bewegungen gelöster Moleküle zu simulieren.

Da man nun die exakte Form der Bactofilin-Bausteine und ihre chemischen Eigenschaften kennt, kann man nach kleinen Molekülen fahnden, die die Polymerisierung der Fasern stören. Auf diese Weise könnte man Wirkstoffe entwickeln, die spezifisch bestimmte Bakterien abtöten.

Die Bactofilinfasern durchziehen dabei nicht nur das Innere von Helicobacter – im harmlosen Caulobacter crescentus bilden die Fasern sogar eng verwobene Matten aus. Diese Matten sind das Fundament für einen langen Stiel, mit dem die Bakterien sich an Oberflächen anheften oder Nahrung aufnehmen können.

„Alle Vorgänge in lebenden Organismen werden letztlich von Proteinen angetrieben, und um zu verstehen, wie sie funktionieren, müssen wir ihre Strukturen kennen“, sagt Adam Lange. Der Biophysiker gehört zu einem der weltweit führenden Experten auf dem Gebiet der Festkörper-NMR, möchte künftig aber die Kombination verschiedener Techniken vorantreiben.

„Auch auf dem Gebiet der Kryoelektronenmikroskopie gab es in den letzten Jahren beeindruckende Durchbrüche, hier wollen wir Kooperationen bilden“, sagt Lange. „Will man Proteinstrukturen in all ihren Dimensionen und Details verstehen, darf nicht jeder Experte für sich allein arbeiten, vielmehr müssen wir die modernen machtvollen Techniken in gemeinsame Projekte integrieren.“

Quelle: Chaowei Shi*, Pascal Fricke*, Lin Lin, Veniamin Chevelkov, Melanie Wegstroth, Karin Giller, Stefan Becker, Martin Thanbichler, and Adam Lange: Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Science Advances, 04 Dec 2015, Vol. 1, no. 11, e1501087, DOI: 10.1126/sciadv.1501087
*gleichberechtigte Erstautoren


Prof. Dr. Adam Lange
Leibniz-Institut für Molekulare Pharmakologie (FMP)
alange@fmp-berlin.de
Tel.: 0049 30 94793-191

Public Relations
Leibniz-Institut für Molekulare Pharmakologie (FMP),
Robert-Rössle-Straße 10
13125 Berlin

Silke Oßwald
Phone: +49 (0)30 94793 104
Email: osswald@fmp-berlin.de

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics