Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomolekulare Krafterzeugung nach dem Prinzip einer Gasdruckfeder

06.03.2015

Die mechanische Basis der Zellkernteilung ist bisher nur bruchstückhaft verstanden. Wissenschaftler der Technischen Universität Dresden konnten nun dem Mosaik der zellbiologischen Mechanismen ein weiteres Teil hinzufügen, wie sie in der aktuellen Ausgabe der renommierten Fachzeitschrift Cell am 5. März 2015 berichten.

Wenn Zellen sich teilen, wird das Erbgut in einem hoch komplexen Prozess an beide Tochterzellen weitergegeben. Eine wichtige Rolle spielen dabei kleine zylinderförmige Proteinröhrchen, die Mikrotubuli. Sie bilden das Gerüst des Spindelapparates, der dabei hilft, das Erbgut in den Chromosomen während der Zellteilung auf die beiden Tochterzellen aufzuteilen.


Die Expansion komprimierter, schwach gebundener Proteine (grün) führt zur einer Kraft, welche die gerichtete Bewegung zweier überlappender Mikrotubuli gegeneinander hervorruft.

Prof. Dr. Stefan Diez

Neben der Aufgabe, direkt an den Chromosomen anzudocken und diese auseinanderzuziehen, sind die Mikrotubuli auch für die Stabilisierung des Spindelapparates von großer Bedeutung. Dazu überlappen die Mikrotubuli in der Zellmitte und verbinden so die gegenüberliegenden Spindelpole miteinander.

In Zellen beobachtet man während der Zellteilung, dass diese überlappenden Mikrotubuli zunächst von so genannten Motorproteinen gegeneinander verschoben werden, dann jedoch abstoppen, bevor sie sich voneinander trennen. Bisher konnten die Wissenschaftler den Mechanismus nur bruchstückhaft erklären, durch den die Bewegung gebremst und die Verschiebung gestoppt wird.

Eine internationale Wissenschaftlergruppe um Professor Dr. Stefan Diez (Heisenberg-Professor am ZIK B CUBE – Center for Molecular Bioengineering der TU Dresden und Gruppenleiter am Max-Planck-Institut für Molekulare Zellbiologie und Genetik) hat in Kooperation mit Wissenschaftlern aus den Niederlanden (Universität Wageningen und AMOLF) nun zeigen können, dass ein aus der Physik altbekanntes Prinzip auch in der Biologie relevant ist: Schwach bindende Proteine, die sich bevorzugt zwischen überlappenden Mikrotubuli anlagern, verhalten sich wie diffundierende Gaspartikel in einem geschlossenen Behälter.

Jene Gaspartikel reagieren auf eine Volumenverkleinerung mit einem ansteigenden Druck. Nach diesem einfachen Prinzip, das man sowohl vom idealen Gasgesetz als auch von haushaltsüblichen Fahrradpumpen kennt, erzeugen auch die schwach gebundenen Proteine zwischen den überlappenden Mikrotubuli beim Auseinandergleiten einen immer größer werdenden Gegendruck. Dadurch wird die Bewegung gebremst und die Verschiebung gestoppt. Dieser biomolekulare Mechanismus entspricht dem einer Gasdruckfeder.

Die Wissenschaftler konnten diesen Mechanismus in Experiment und Theorie nachweisen. Darüber hinaus gelang es ihnen, die entstehenden Kräfte unter Verwendung einer optischen Pinzette direkt zu vermessen. Abschließend konnten sie zeigen, dass der gasähnliche Druck der schwach bindenden Proteine ausreichend ist, um die Kraft der Motorproteine zu kompensieren und das Auseinanderfallen der überlappenden Mikrotubuli zu verhindern.

Damit wurde nicht nur ein Minimalmechanismus zur Stabilisierung von überlappenden Mikrotubuli gefunden und experimentell nachgewiesen, sondern auch ein weiterer allgemeingültiger Mechanismus in das Repertoire der zellbiologischen Wirkmechanismen aufgenommen.

Die Studie wurde am 5. März 2015 im renommierten Fachjournal "Cell" online veröffentlicht und erscheint am 12. März 2015 in der gedruckten Ausgabe.

Originalpublikation:
Zdenek Lansky, Marcus Braun, Annemarie Lüdecke, Michael Schlierf, Pieter Rein ten Wolde, Marcel E Janson, Stefan Diez, Diffusible crosslinkers generate directed forces in microtubule networks, DOI:10.1016/j.cell.2015.01.051

Informationen für Journalisten:
Prof. Dr. Stefan Diez
Heisenberg-Professur für BioNanoWerkzeuge

Technische Universität Dresden
ZIK B CUBE - Center for Molecular Bioengineering
Tel.: +49 (0)351 463 43010
Fax: +49 (0) 351 463 40322
stefan.diez@tu-dresden.de
http://www.tu-dresden.de/bcube

Über das B CUBE an der TU Dresden
Das Zentrum für Innovationskompetenz (ZIK) B CUBE - Center for Molecular Bioengineering wurde 2008 im Rahmen der BMBF-Förderinitiative „Unternehmen Region“ an der Technischen Universität (TU) Dresden eingerichtet. Das Zentrum widmet sich der Erforschung und Entwicklung biologischer Materialien in den drei Hauptrichtungen BioProspektion, BioNano Werkzeuge sowie Biomimetische Materialien und trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei.

Bildunterschrift: Der obere Teil des Bildes zeigt die schematische Darstellung der Bewegung zweier überlappender Mikrotubuli (rot und orange) zusammen mit typischen fluoreszenzmikroskopischen Aufnahmen. Der untere Teil des Bildes zeigt eine Gasdruckfeder, das makroskopische Analogon des biomolekularen Systems, in welcher das Gas durch die Wirkung einer äußeren Kraft komprimiert wird und späterhin wieder expandiert, sobald die äußere Kraft verringert wird.

Weitere Informationen:

http://www.tu-dresden.de/bcube

Kim-Astrid Magister | Technische Universität Dresden

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften