Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomolekulare Krafterzeugung nach dem Prinzip einer Gasdruckfeder

06.03.2015

Die mechanische Basis der Zellkernteilung ist bisher nur bruchstückhaft verstanden. Wissenschaftler der Technischen Universität Dresden konnten nun dem Mosaik der zellbiologischen Mechanismen ein weiteres Teil hinzufügen, wie sie in der aktuellen Ausgabe der renommierten Fachzeitschrift Cell am 5. März 2015 berichten.

Wenn Zellen sich teilen, wird das Erbgut in einem hoch komplexen Prozess an beide Tochterzellen weitergegeben. Eine wichtige Rolle spielen dabei kleine zylinderförmige Proteinröhrchen, die Mikrotubuli. Sie bilden das Gerüst des Spindelapparates, der dabei hilft, das Erbgut in den Chromosomen während der Zellteilung auf die beiden Tochterzellen aufzuteilen.


Die Expansion komprimierter, schwach gebundener Proteine (grün) führt zur einer Kraft, welche die gerichtete Bewegung zweier überlappender Mikrotubuli gegeneinander hervorruft.

Prof. Dr. Stefan Diez

Neben der Aufgabe, direkt an den Chromosomen anzudocken und diese auseinanderzuziehen, sind die Mikrotubuli auch für die Stabilisierung des Spindelapparates von großer Bedeutung. Dazu überlappen die Mikrotubuli in der Zellmitte und verbinden so die gegenüberliegenden Spindelpole miteinander.

In Zellen beobachtet man während der Zellteilung, dass diese überlappenden Mikrotubuli zunächst von so genannten Motorproteinen gegeneinander verschoben werden, dann jedoch abstoppen, bevor sie sich voneinander trennen. Bisher konnten die Wissenschaftler den Mechanismus nur bruchstückhaft erklären, durch den die Bewegung gebremst und die Verschiebung gestoppt wird.

Eine internationale Wissenschaftlergruppe um Professor Dr. Stefan Diez (Heisenberg-Professor am ZIK B CUBE – Center for Molecular Bioengineering der TU Dresden und Gruppenleiter am Max-Planck-Institut für Molekulare Zellbiologie und Genetik) hat in Kooperation mit Wissenschaftlern aus den Niederlanden (Universität Wageningen und AMOLF) nun zeigen können, dass ein aus der Physik altbekanntes Prinzip auch in der Biologie relevant ist: Schwach bindende Proteine, die sich bevorzugt zwischen überlappenden Mikrotubuli anlagern, verhalten sich wie diffundierende Gaspartikel in einem geschlossenen Behälter.

Jene Gaspartikel reagieren auf eine Volumenverkleinerung mit einem ansteigenden Druck. Nach diesem einfachen Prinzip, das man sowohl vom idealen Gasgesetz als auch von haushaltsüblichen Fahrradpumpen kennt, erzeugen auch die schwach gebundenen Proteine zwischen den überlappenden Mikrotubuli beim Auseinandergleiten einen immer größer werdenden Gegendruck. Dadurch wird die Bewegung gebremst und die Verschiebung gestoppt. Dieser biomolekulare Mechanismus entspricht dem einer Gasdruckfeder.

Die Wissenschaftler konnten diesen Mechanismus in Experiment und Theorie nachweisen. Darüber hinaus gelang es ihnen, die entstehenden Kräfte unter Verwendung einer optischen Pinzette direkt zu vermessen. Abschließend konnten sie zeigen, dass der gasähnliche Druck der schwach bindenden Proteine ausreichend ist, um die Kraft der Motorproteine zu kompensieren und das Auseinanderfallen der überlappenden Mikrotubuli zu verhindern.

Damit wurde nicht nur ein Minimalmechanismus zur Stabilisierung von überlappenden Mikrotubuli gefunden und experimentell nachgewiesen, sondern auch ein weiterer allgemeingültiger Mechanismus in das Repertoire der zellbiologischen Wirkmechanismen aufgenommen.

Die Studie wurde am 5. März 2015 im renommierten Fachjournal "Cell" online veröffentlicht und erscheint am 12. März 2015 in der gedruckten Ausgabe.

Originalpublikation:
Zdenek Lansky, Marcus Braun, Annemarie Lüdecke, Michael Schlierf, Pieter Rein ten Wolde, Marcel E Janson, Stefan Diez, Diffusible crosslinkers generate directed forces in microtubule networks, DOI:10.1016/j.cell.2015.01.051

Informationen für Journalisten:
Prof. Dr. Stefan Diez
Heisenberg-Professur für BioNanoWerkzeuge

Technische Universität Dresden
ZIK B CUBE - Center for Molecular Bioengineering
Tel.: +49 (0)351 463 43010
Fax: +49 (0) 351 463 40322
stefan.diez@tu-dresden.de
http://www.tu-dresden.de/bcube

Über das B CUBE an der TU Dresden
Das Zentrum für Innovationskompetenz (ZIK) B CUBE - Center for Molecular Bioengineering wurde 2008 im Rahmen der BMBF-Förderinitiative „Unternehmen Region“ an der Technischen Universität (TU) Dresden eingerichtet. Das Zentrum widmet sich der Erforschung und Entwicklung biologischer Materialien in den drei Hauptrichtungen BioProspektion, BioNano Werkzeuge sowie Biomimetische Materialien und trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei.

Bildunterschrift: Der obere Teil des Bildes zeigt die schematische Darstellung der Bewegung zweier überlappender Mikrotubuli (rot und orange) zusammen mit typischen fluoreszenzmikroskopischen Aufnahmen. Der untere Teil des Bildes zeigt eine Gasdruckfeder, das makroskopische Analogon des biomolekularen Systems, in welcher das Gas durch die Wirkung einer äußeren Kraft komprimiert wird und späterhin wieder expandiert, sobald die äußere Kraft verringert wird.

Weitere Informationen:

http://www.tu-dresden.de/bcube

Kim-Astrid Magister | Technische Universität Dresden

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise