Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomolekulare Krafterzeugung nach dem Prinzip einer Gasdruckfeder

06.03.2015

Die mechanische Basis der Zellkernteilung ist bisher nur bruchstückhaft verstanden. Wissenschaftler der Technischen Universität Dresden konnten nun dem Mosaik der zellbiologischen Mechanismen ein weiteres Teil hinzufügen, wie sie in der aktuellen Ausgabe der renommierten Fachzeitschrift Cell am 5. März 2015 berichten.

Wenn Zellen sich teilen, wird das Erbgut in einem hoch komplexen Prozess an beide Tochterzellen weitergegeben. Eine wichtige Rolle spielen dabei kleine zylinderförmige Proteinröhrchen, die Mikrotubuli. Sie bilden das Gerüst des Spindelapparates, der dabei hilft, das Erbgut in den Chromosomen während der Zellteilung auf die beiden Tochterzellen aufzuteilen.


Die Expansion komprimierter, schwach gebundener Proteine (grün) führt zur einer Kraft, welche die gerichtete Bewegung zweier überlappender Mikrotubuli gegeneinander hervorruft.

Prof. Dr. Stefan Diez

Neben der Aufgabe, direkt an den Chromosomen anzudocken und diese auseinanderzuziehen, sind die Mikrotubuli auch für die Stabilisierung des Spindelapparates von großer Bedeutung. Dazu überlappen die Mikrotubuli in der Zellmitte und verbinden so die gegenüberliegenden Spindelpole miteinander.

In Zellen beobachtet man während der Zellteilung, dass diese überlappenden Mikrotubuli zunächst von so genannten Motorproteinen gegeneinander verschoben werden, dann jedoch abstoppen, bevor sie sich voneinander trennen. Bisher konnten die Wissenschaftler den Mechanismus nur bruchstückhaft erklären, durch den die Bewegung gebremst und die Verschiebung gestoppt wird.

Eine internationale Wissenschaftlergruppe um Professor Dr. Stefan Diez (Heisenberg-Professor am ZIK B CUBE – Center for Molecular Bioengineering der TU Dresden und Gruppenleiter am Max-Planck-Institut für Molekulare Zellbiologie und Genetik) hat in Kooperation mit Wissenschaftlern aus den Niederlanden (Universität Wageningen und AMOLF) nun zeigen können, dass ein aus der Physik altbekanntes Prinzip auch in der Biologie relevant ist: Schwach bindende Proteine, die sich bevorzugt zwischen überlappenden Mikrotubuli anlagern, verhalten sich wie diffundierende Gaspartikel in einem geschlossenen Behälter.

Jene Gaspartikel reagieren auf eine Volumenverkleinerung mit einem ansteigenden Druck. Nach diesem einfachen Prinzip, das man sowohl vom idealen Gasgesetz als auch von haushaltsüblichen Fahrradpumpen kennt, erzeugen auch die schwach gebundenen Proteine zwischen den überlappenden Mikrotubuli beim Auseinandergleiten einen immer größer werdenden Gegendruck. Dadurch wird die Bewegung gebremst und die Verschiebung gestoppt. Dieser biomolekulare Mechanismus entspricht dem einer Gasdruckfeder.

Die Wissenschaftler konnten diesen Mechanismus in Experiment und Theorie nachweisen. Darüber hinaus gelang es ihnen, die entstehenden Kräfte unter Verwendung einer optischen Pinzette direkt zu vermessen. Abschließend konnten sie zeigen, dass der gasähnliche Druck der schwach bindenden Proteine ausreichend ist, um die Kraft der Motorproteine zu kompensieren und das Auseinanderfallen der überlappenden Mikrotubuli zu verhindern.

Damit wurde nicht nur ein Minimalmechanismus zur Stabilisierung von überlappenden Mikrotubuli gefunden und experimentell nachgewiesen, sondern auch ein weiterer allgemeingültiger Mechanismus in das Repertoire der zellbiologischen Wirkmechanismen aufgenommen.

Die Studie wurde am 5. März 2015 im renommierten Fachjournal "Cell" online veröffentlicht und erscheint am 12. März 2015 in der gedruckten Ausgabe.

Originalpublikation:
Zdenek Lansky, Marcus Braun, Annemarie Lüdecke, Michael Schlierf, Pieter Rein ten Wolde, Marcel E Janson, Stefan Diez, Diffusible crosslinkers generate directed forces in microtubule networks, DOI:10.1016/j.cell.2015.01.051

Informationen für Journalisten:
Prof. Dr. Stefan Diez
Heisenberg-Professur für BioNanoWerkzeuge

Technische Universität Dresden
ZIK B CUBE - Center for Molecular Bioengineering
Tel.: +49 (0)351 463 43010
Fax: +49 (0) 351 463 40322
stefan.diez@tu-dresden.de
http://www.tu-dresden.de/bcube

Über das B CUBE an der TU Dresden
Das Zentrum für Innovationskompetenz (ZIK) B CUBE - Center for Molecular Bioengineering wurde 2008 im Rahmen der BMBF-Förderinitiative „Unternehmen Region“ an der Technischen Universität (TU) Dresden eingerichtet. Das Zentrum widmet sich der Erforschung und Entwicklung biologischer Materialien in den drei Hauptrichtungen BioProspektion, BioNano Werkzeuge sowie Biomimetische Materialien und trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei.

Bildunterschrift: Der obere Teil des Bildes zeigt die schematische Darstellung der Bewegung zweier überlappender Mikrotubuli (rot und orange) zusammen mit typischen fluoreszenzmikroskopischen Aufnahmen. Der untere Teil des Bildes zeigt eine Gasdruckfeder, das makroskopische Analogon des biomolekularen Systems, in welcher das Gas durch die Wirkung einer äußeren Kraft komprimiert wird und späterhin wieder expandiert, sobald die äußere Kraft verringert wird.

Weitere Informationen:

http://www.tu-dresden.de/bcube

Kim-Astrid Magister | Technische Universität Dresden

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz