Biomoleküle kopieren, Innovationspotenzial ausschöpfen

Beispiel einer DNA-Kopie in einem Mikroarray mit etwa 4.000 Punkten auf einer Fläche von 10 mm Höhe und 14 mm Breite. Jeder Punkt stellt eine andere DNA dar; ähnliche Farben entsprechen DNA mit ähnlichen Teilsequenzen. Bild: Christin Rath/Philipp Meyer

Ein Biomolekül-Kopierer, der ähnlich wie ein Fotokopierer funktioniert: Das Bundesministerium für Bildung und Forschung fördert den Freiburger Biochemiker und Physiker Dr. Günter Roth und seine Arbeitsgruppe für diese Entwicklung in der Maßnahme „Validierung des technologischen und gesellschaftlichen Innovationspotenzials wissenschaftlicher Forschung – VIP+“ mit mehr als 1,6 Millionen Euro.

Das Team soll in den nächsten drei Jahren mögliche Anwendungsfelder des Biomolekül-Kopierers erschließen und auf ihre wirtschaftliche Verwertbarkeit prüfen. Die Entwicklung der Forscherinnen und Forscher könnte beispielsweise Waschmittelenzyme verbessern, Antikörper kopieren und in wenigen Tagen potenzielle Impfstoffkandidaten gegen Erreger finden.

Der Kopierer erzeugt eine DNA-Vorlage, fertigt daraus weitere Kopien von DNA, RNA oder Proteinen an und produziert so Mikroarrays. Diese tragen auf einer etwa fingernagelgroßen Fläche tausende kleine Punkte, von denen jeder ein anderes Biomolekül enthält. Dadurch können Forscher viele biochemische Interaktionen innerhalb eines einzigen Versuchs messen.

Mikroarrays kommen bei Genanalysen, der Findung von Biomarkern, der Aufklärung von zellulären Prozessen sowie in der personalisierten Medizin zum Einsatz. „Die konventionelle Herstellung von Mikroarrays ist komplex, zeitintensiv und teuer, was Einsätze häufig verhindert“, erklärt Roth. „Unser erster Prototyp kann bereits Mikroarrays mit mehr als 100.000 DNA-Sequenzen zu einem günstigeren Preis und mit höherer Qualität als die kommerzielle Konkurrenz herstellen.“

Die Arbeitsgruppe erreichte 2015 bei einigen Wettbewerben hochrangige Plätze. Mit dem Kopierverfahren „immune2day“, das in 48 Stunden Impfstoffkandidaten finden soll, hat das Team unter anderem beim Elevator Pitch Baden-Württemberg 2014/2015 den ersten Preis gewonnen. Günter Roth ist Leiter einer Arbeitsgruppe am Zentrum für Biosystemanalyse (ZBSA) der Albert-Ludwigs-Universität und Mitglied des Freiburger Exzellenzclusters BIOSS Centre for Biological Signalling Studies.

Webseite der Arbeitsgruppe Roth
http://www.zbsa.uni-freiburg.de/projects/ag-roth

Bildunterschrift:
Beispiel einer DNA-Kopie in einem Mikroarray mit etwa 4.000 Punkten auf einer Fläche von 10 mm Höhe und 14 mm Breite. Jeder Punkt stellt eine andere DNA dar; ähnliche Farben entsprechen DNA mit ähnlichen Teilsequenzen.

Kontakt:
Dr. Günter Roth
Zentrum für Biosystemanalyse (ZBSA)
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-97167
E-Mail: guenter.roth@zbsa.uni-freiburg.de

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-08-15.119

Media Contact

Rudolf-Werner Dreier Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer