Bewegungen in der lebenden Zelle beobachten

Anlehnung an Zellexperimente: skizzierte Darstellung, wie Energie von den fluktuierenden Zilien durch Kollisionen auf das Flügelrad übertragen wird. Nanosystems Initiative Munich (NIM), Dutch Data Design, Universität Göttingen

Ein Forscherteam aus Deutschland, den Niederlanden und den USA hat eine neue Methode entwickelt, mit der sich Bewegungsprozesse in lebenden Zellen nach ihrem Energieverbrauch unterscheiden lassen.

Um die Funktion von Zellen zu verstehen, ist es wichtig, zwischen Vorgängen zu unterscheiden, die aktiv durch den Verbrauch von metabolischer Energie angetrieben werden, und solchen, die nur aufgrund von thermischer Kollision stattfinden.

Neben den Universitäten Göttingen und Amsterdam waren Wissenschaftler der Ludwig-Maximilians-Universität München, der amerikanischen Universitäten Princeton und Yale sowie des Massachusetts Institute of Technology an der Studie beteiligt. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.

Ein Charakteristikum lebender Systeme ist, dass sie fortwährend Energie verbrauchen müssen, um am Leben zu bleiben – Energie, die durch Photosynthese oder Stoffwechsel gewonnen wird. Dieser Zustand des „thermodynamischen Ungleichgewichts“ unterscheidet sie von toter Materie, die sich meistens im „thermodynamischen Gleichgewicht“ befindet.

Mikroskopische Bewegungsprozesse in lebenden Zellen können jedoch sowohl durch thermodynamisches Ungleichgewicht als auch beispielsweise durch die Bombardierung durch kleine Moleküle – wie etwa Wassermoleküle – in Gang gesetzt werden. Letzteres findet auch im Gleichgewicht statt. Welcher Art der Antrieb ist, lässt sich auch bei mikroskopischer Betrachtung nicht immer zweifelsfrei feststellen.

Die Forscherinnen und Forscher wandten nun fundamentale Prinzipien der statistischen Thermodynamik an, um die beiden verschiedenen Antriebsarten eindeutig zu unterscheiden. Durch die sorgfältige Evaluation von Aufnahmen eines Videomikroskops konnten sie Bewegungsprozesse identifizieren, bei denen bestimmte Vorgänge zyklisch in einer bestimmten Richtung abliefen, was im Gleichgewicht strikt ausgeschlossen und damit ein Beweis für ein System im thermodynamischen Ungleichgewicht ist.

„Diese Erkenntnis ist wichtig für die Biologie, aber auch für die statistische Physik und die Biophysik, da sie eine einfache und praktische Methode darstellt, um nachzuweisen, welche Prozesse in lebenden Systemen aktiv angetrieben werden“, erläutert einer der beiden Leiter der Studie, Prof. Dr. Christoph Schmidt vom III. Physikalischen Institut der Universität Göttingen.

Originalveröffentlichung: Christopher Battle et al. Broken detailed balance at mesoscopic scales in active biological systems. Science 2016. Doi: 10.1126/science.aac8167.

Kontaktadresse:
Prof. Dr. Christoph Schmidt
Georg-August-Universität Göttingen
Fakultät für Physik
III. Physikalisches Institut – Biophysik
Friedrich-Hund-Platz 1, 37077 Göttingen, Telefon (0551) 39-7713
E-Mail: christoph.schmidt@phys.uni-goettingen.de
Internet: http://www.uni-goettingen.de/en/499370.html

http://www.uni-goettingen.de/de/3240.html?cid=5477 Fotos

Media Contact

Thomas Richter Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer