Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bessere Nierenkrebstherapien dank neuem Mausmodell

30.05.2017

Forschung im Bereich von Nierenkrebs ist sehr wichtig, denn noch können viele Patienten mit dieser Krankheit nicht geheilt werden. Forschende der Universität Zürich haben nun herausgefunden, welche Gen-Mutationen für die Entstehung eines Nierenkarzinoms mitverantwortlich sind. Das von ihnen neu entwickelte Mausmodell ermöglicht wichtige Fortschritte in der Erforschung und Behandlung dieser Krebsart.

Rund zwei bis drei Prozent aller Personen mit einer Krebserkrankung leiden unter Nierenkrebs. Die häufigste Form dieser Krankheit ist das klarzellige Nierenkarzinom. Bei etwa der Hälfte der betroffenen Patienten bildet der Tumor Metastasen – eine Heilung ist dann in der Regel nicht mehr möglich.


UZH-Forschenden gelang es erstmals, ein Mausmodell für Nierenkarzinom zu entwickeln.

Universität Zürich

Neues Mausmodell für die Erforschung von Nierenkrebs

Um die verschiedenen Krebsarten zu erforschen und um neue therapeutische Ansätze zu testen sind präzise Mausmodelle entscheidend. Denn die Tumoren in der Maus widerspiegeln die Genetik sowie die molekularen und zellulären Merkmale der menschlichen Pendants. Ein Mausmodell des Nierenzellkarzinoms gab es aber bisher trotz jahrzehntelanger Forschungsanstrengungen nicht.

Die Entwicklung eines Mausmodells ist nun Forschenden der Universität Zürich im Rahmen eines langjährigen Forschungsprojekts gelungen. Geleitet wurde die Arbeit von Sabine Harlander und ihren Kollegen am Physiologischen Institut der UZH im Labor von Professor Ian Frew, der seit Kurzem an der Universität Freiburg in Deutschland tätig ist.

Die Forschenden identifizierten zunächst Gene, die in menschlichen Nierenkarzinomen oft mutiert sind. In einem nächsten Schritt wurden drei dieser Gene gleichzeitig in Nierenzellen von Mäusen mutiert, worauf sich bei diesen Nierenkrebs entwickelte.

Genmutationen fördern die unkontrollierte Zellvermehrung

Von der Mutierung der Gene in den Nierenzellen bis zur Tumorentstehung dauerte es acht bis zwölf Monate. Diese im Vergleich zur Lebenszeit der Mäuse lange Dauer deutet darauf hin, dass noch zusätzliche Faktoren an der Tumorentwicklung beteiligt sind. Daher wurden die proteinkodierenden Gene in den Maustumoren genauer analysiert. Es zeigte sich, dass in allen Tumoren mindestens eines der vielen Gene mutiert war, welche für die korrekte Funktion des primären Ciliums verantwortlich sind. Diese Struktur befindet sich auf der Oberfläche der Zelle und ist unter anderem für die Koordination von Zellsignalen zuständig.

Aufgrund dieser Entdeckung untersuchten die Forscher, ob solche Mutationen auch in Nierenkarzinomzellen des Menschen vorkommen – und wurden fündig. Die Wissenschaftler gehen davon aus, dass ein Verlust der normalen Funktion des primären Ciliums dazu führt, dass sich Nierenepithelzellen unkontrolliert vermehren können. «Diese Forschungsarbeit liefert ein sehr gutes Beispiel dafür, wie Mausmodelle helfen, Krebskrankheiten von Menschen besser zu verstehen», sagt Sabine Harlander.

Bessere Therapien gegen Nierenkrebs – dank Mausmodell

Das neue Mausmodell macht es möglich, bessere Therapien gegen Nierenkrebs zu entwickeln. Ein Beispiel: Patienten mit metastasiertem Nierenkarzinom erhalten verschiedene Medikamente. Bei manchen Patienten wirken diese, bei anderen nicht. Werden Mäuse mit Nierenkrebs mit denselben Wirkstoffen behandelt, lässt sich das gleiche Phänomen beobachten: Manche Tumoren schrumpfen, manche nicht.

Nun kann man bei Mäusen untersuchen, welche Faktoren dazu beitragen, dass sie empfindlich oder resistent auf einzelne Medikamente reagieren. «Durch die Kombination von Medikamententests mit Gen-Analysen hoffen wir, dank unserem Mausmodell vertiefte Erkenntnisse zu gewinnen, wie die Tumoren Medikamentenresistenzen entwickeln», ergänzt Ian Frew. Dieses Wissen ist nötig, damit Therapien zukünftig besser an die individuellen Charakteristika der Patienten angepasst werden können.

Auch bei der Weiterentwicklung von Immuntherapien kann das Mausmodell helfen. Bei Immuntherapien wird das körpereigene Immunsystem dazu angeregt, verstärkt gegen Tumorzellen anzukämpfen. In diesem Bereich der Krebsforschung wurden in den letzten Jahren entscheidende Fortschritte gemacht – auch beim Nierenkarzinom. Im neuen Mausmodell lässt sich nun untersuchen, wie Nierentumore im Kontext eines normalen Immunsystems entstehen und wie Krebszellen es schaffen, den Angriffen den Immunsystems zu entkommen. Ziel der Forschenden ist es letztlich, dank neuen Erkenntnissen die Wirksamkeit von immunmodulatorischen Therapien zu verbessern.

Literatur:
Sabine Harlander, Désirée Schönenberger, Nora C. Toussaint, Michael Prummer, Antonella Catalano, Laura Brandt, Holger Moch, Peter J. Wild and Ian J. Frew. Combined Vhl, Trp53 and Rb1 mutation causes clear cell renal cell carcinoma in mice. Nature Medicine. 29 May 2017. doi:10.1038/nm.4343

Kontakt:
Prof. Dr. Ian Frew
Zentrum für Translationale Zellforschung
Albert-Ludwigs-Universität Freiburg (D)
Tel. +49 761 270 71831
E-Mail: ian.frew@uniklinik-freiburg.de

Dr. Sabine Harlander
Physiologisches Institut
Universität Zürich
Tel. +41 44 635 50 85
E-Mail: sabine.harlander@access.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Nierenkrebs-Mausmodell.html

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte