Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Giftpflanzen vor ihren eigenen Waffen schützen

06.11.2007
Entschärfen und recyceln auf einen Schlag
PNAS berichtet über RUB-Studie

Pflanzen sind bekanntermaßen im Boden festgewachsen - sie können sich daher einem Fraßfeind nicht durch Flucht entziehen. Trotzdem sind sie nicht wehrlos, sondern setzen ihren Feinden ein ganzes Arsenal von teils hochgiftigen Substanzen entgegen. Aber wie schützt sich die Pflanze selbst vor diesen Giften?

Das untersuchten die Bochumer Pflanzenphysiologen um PD Dr. Markus Piotrowski zusammen mit Prof. Birger L. Møller von der "Royal Veterany and Agricultural University" (KVL) in Kopenhagen. Sie fanden heraus, dass giftige cyanogene Glykoside von der Pflanze abgebaut werden können, ohne dass dabei giftige Produkte entstehen. Der in diesen Stoffen gespeicherte und für die Pflanzen wichtige Stickstoff wird dabei in Form von Ammonium wieder zurück gewonnen. Die Hauptrolle bei diesem Prozess spielt das Enzym Nitrilase. Die Ergebnisse der Studie sind in den Proceedings of the National Academy of Sciences of the U.S.A (PNAS) veröffentlicht.

Erst bei Verletzung giftig: cyanogene Glykoside

Viele Giftstoffe der Pflanzen werden als ungiftige Vorstufen gelagert, und erst wenn die Pflanze verletzt wird, wird auch der Giftstoff freigesetzt. Das gilt auch für die cyanogenen Glykoside, die als Zuckerverbindungen in separaten Kammern innerhalb der Pflanzenzellen (Vakuolen) gelagert werden. Bei einer Verletzung der Zelle wird der Zucker abgespalten und es entstehen unstabile Hydroxynitrile, aus denen das starke Atmungsgift Blausäure freigesetzt wird - 50 bis 200 mg davon sind für einen Menschen tödlich. Solche cyanogenen Glykoside findet man in großen Mengen zum Beispiel in Bittermandeln, im Maniok, der vor allem in Afrika als Nahrungsmittel dient, und in jungen Hirsepflanzen. Durch unzureichende Zubereitung von Maniok kommt es in Afrika jährlich zu vielen akuten und chronischen Blausäurevergiftungen.

Nur zu zweit funktionstüchtig: Nitrilasen in Gräsern

Höheren Pflanzen produzieren ständig geringe Mengen Blausäure als Abfallprodukt ihres eigenen Stoffwechsels. Die Blausäure wird von der Pflanze zuerst an die Aminosäure Cystein gekoppelt, wobei die Aminosäure Beta-Cyanoalanin entsteht. Diese ist immer noch giftig und wird erst durch das Enzym Nitrilase in die von der Pflanze verwertbaren Aminosäuren Asparagin und Asparaginsäure umgesetzt. "Dieser Prozess war bekannt", schildert Markus Piotrowski, "wir stießen aber auf Probleme, als wir die Nitrilasen von Gräsern untersuchten. Die Nitrilasen von Gerste, Reis, Mais und Hirse waren in unseren Tests inaktiv. Wir wussten aber, dass diese Pflanzen auch Cyanoalanin umsetzen können." Die Lösung des Rätsels: Alle diese Gräser besitzen zwei Nitrilasen. Diese beiden müssen einen Heterokomplex bilden, also miteinander interagieren, um aktiv zu werden. "Dieses Phänomen hatte vor uns noch nie jemand beschrieben", berichtet Markus Piotrowski.

Dritte Nitrilase: Neuer Recyclingweg

Und die Forscher machten noch eine spannende Entdeckung: In der Hirse fanden sie eine dritte Nitrilase. Wenn diese im Heterokomplex vorliegt, kann sie auch andere Stoffe umsetzen, insbesondere 4-Hydroxyphenylacetonitril. Markus Piotrowski erklärt: "Junge Hirse-Pflanzen enthalten in hohen Mengen das cyanogene Glykosid Dhurrin. Wird die Pflanze von einem Insekt angefressen, wird daraus Blausäure freigesetzt. Wenn die Pflanzen aber älter werden, bauen sie das Dhurrin selber ab - und zwar nicht auf die gleiche Weise wie bei einer Verwundung." Die Entdeckung, dass die Nitrilasen der Hirse auch 4-Hydroxyphenylacetonitril umsetzen können, welches ein mögliches Abbauprodukt des Dhurrins ist, eröffnete auch einen anderen Weg, bei dem gar keine Blausäure mehr freigesetzt wird. In Kopenhagen gelang dann auch der Nachweis, dass Dhurrin tatsächlich zu 4-Hydroxyphenylacetonitril umgesetzt werden kann. "Offensichtlich brauchen die älteren Hirsepflanzen das Dhurrin nicht mehr so notwendig, um sich gegen Fraßfeinde zu schützen", folgert Markus Piotrowski. "Im Dhurrin steckt aber wertvoller Stickstoff, den die Pflanze für ihren Stoffwechsel braucht." Durch den neu entdeckten Abbauweg kann dieser Stickstoff als Ammonium zurück gewonnen werden, ohne dass vorher Blausäure freigesetzt werden muss. Als nächstes wollen die Bochumer und Kopenhagener Pflanzenwissenschaftler das Enzym identifizieren, welches den endogenen Abbau des cyanogenen Glykosids einleitet. Mit dieser Kenntnis könnte der Auf- und Abbau dieser pflanzlichen Giftstoffe gesteuert werden.

Titelaufnahme

Jenrich, R., Trompetter, I., Bak, S., Olsen, C.E., Møller, B.L., and Piotrowski, M.: Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. In: Proc. Natl. Acad. Sci. USA, http://www.pnas.org_cgi_doi_10.1073_pnas.0709315104

Weitere Informationen

PD Dr. Markus Piotrowski, Lehrstuhl für Pflanzenphysiologie, 44780 Bochum, ND3/48, Tel.: 0234/32-24290, Fax.: 0234/32-14187, E-Mail: Markus.Piotrowski@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/pflaphy/Seiten_deutsch/PG_Piotrowski_d.html
http://homepage.ruhr-uni-bochum.de/Markus.Piotrowski/Index.html
http://www.plbio.life.ku.dk/English/The-department/Sections_centres/Plant-Biochemistry-Laboratory.aspx, http://www.place.kvl.dk/

Weitere Berichte zu: Blausäure Dhurrin Glykosid Nitrilase Nitrilasen Pflanze

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie