Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien in Biofilmen halten Uran fest

17.10.2007
Uran kommt in unserer Umwelt natürlich vor. In dicht besiedelten Regionen wie Sachsen, wo lange Jahre Uranerz abgebaut wurde, ist es besonders wichtig zu wissen, wie sich Uran in der Natur ausbreitet. Neueste Untersuchungen im Forschungszentrum Dresden-Rossendorf (FZD) belegen, dass Bakterien eine wichtige Rolle beim Transport von Uran in der Umwelt übernehmen können. Die Ergebnisse wurden vor kurzem im Fachjournal "Environmental Science & Technology" veröffentlicht.

Bakterien sind keine Einzelgänger, vielmehr sind 99 Prozent aller Bakterien in Biofilmen organisiert. Typische Biofilme sind Zahnbeläge oder schleimige Überzüge auf in Gewässer befindlichen Steinen. Biofilme sind allgegenwärtig und treten insbesondere an Grenzflächen zwischen fest und flüssig auf.

Ein Biofilm besteht zu 50 bis 95 % aus Wasser. Der Rest setzt sich aus Mikroorganismen und organischen Makromolekülen zusammen. In Biofilmen findet man sehr komplexe und zugleich gut aufeinander abgestimmte Lebensgemeinschaften von Mikroorganismen vor. Dabei kann es zur Ausbildung von Nischen mit unterschiedlichen geochemischen Parametern (z. B. pH-Wert, gelöste Sauerstoffkonzentration) innerhalb des Biofilms kommen.

Biofilme sind von Wasserkanälen durchzogen, auf denen den Bakterien Nährstoffe zugeführt und deren Ausscheidungen abtransportiert werden. Auf diese Weise gelangen auch toxische Schwermetalle in den Biofilm und können dort zurückgehalten werden. Somit können Biofilme einen natürlichen Filter für Wasserreinigungs-Prozesse bilden.

... mehr zu:
»Bakterium »Biofilm »FZD »Uran

Uran kann über das Transportmedium Wasser zu den Biofilmen gelangen. Hierbei spielt die Oxidationsstufe des Urans eine große Rolle: das sechswertige Uran ist wasserlöslich und somit mobil (im Zentrum dieser Verbindung steht das Uranyl-Ion UO22+ - das Uranatom ist von zwei Sauerstoffatomen umgeben), das vierwertige Uran dagegen ist kaum wasserlöslich. Wird das mobile Uran(VI) in einen solchen Biofilm geleitet, ist die Wahrscheinlichkeit groß, dass es durch den Weg von der Oberfläche in das Innere des Biofilms chemisch in vierwertiges Uran umgewandelt wird. Bei dieser Reaktion gibt das Uran(VI) zwei Elektronen ab, allerdings war bisher der genaue Reaktionsvorgang unklar.

Die ausgefeilten Analysetechniken, die im FZD zur Verfügung stehen, ermöglichten erstmals die genaue Untersuchung des chemischen Verhaltens von Uran in lebender Umgebung. So konnte die komplexe Wechselwirkung zwischen dem Schwermetall und den Bakterien, die in einem Biofilm leben, aufgedeckt werden. Dieses Wissen könnte in Zukunft dabei helfen, Konzepte für intelligente Sanierungsmaßnahmen zu erstellen.

Den Redox-Prozess von Uran in einem Biofilm hat ein Wissenschaftler-Team um Dr. Thuro Arnold im Forschungszentrum Dresden-Rossendorf in Kooperation mit Prof. Isolde Röske und Dr. Axel Wobus von der Technischen Universität Dresden nun erstmalig untersucht. Mit einem konfokalen Laser-Fluoreszenz-Mikroskop gelang es, die Reduktion von Uran(VI) zum Uran(V) zu visualisieren und spektroskopisch zu identifizieren. Die Forscher gaben zunächst einem der Natur nachempfundenen Biofilm eine wohldefinierte Lösung mit Uranyl(VI)-Ionen bei. Um Uran im Mikroskop sichtbar machen zu können, wird ausgenutzt, dass einige Uran-Verbindungen bei gezielter Laseranregung Lumineszenz zeigen, also nachleuchten.

Einmalig ist das per Mikroskop entstandene Bild, auf dem sechs- und fünfwertiges Uran gleichzeitig zu sehen sind. Da Uran(V) nur kurze Zeit stabil ist, herrscht dieser Oxidationszustand nicht lange vor. Dr. Arnold: "Wir konnten nachweisen, dass die Umwandlung in wasserunlösliches Uran in zwei Etappen vor sich geht. Während der im Biofilm ablaufenden Reaktion gibt das sechswertige Uran erst ein Elektron ab, woraus das fünfwertige Uran entsteht.

Für die weitere Umwandlung zum wasserunlöslichen Uran(IV) gibt es zwei Möglichkeiten. Zum einen kann das Uran(V) im Biofilm unter Abgabe eines zusätzlichen Elektrons weiter zu Uran (IV) reduziert oder aber in einem komplizierteren Prozess zu Uran(IV) und Uran (VI) umgewandelt werden. Da das im Biofilm entstandene vierwertige Uran quasi wasserunlöslich ist, fällt es aus und wird im Biofilm festgehalten."

Eine besondere Leistung der Rossendorfer Wissenschaftler besteht zudem darin, dass sie gleichzeitig mit dem mikroskopischen Nachweis der Reduktion von Uran in einem Biofilm die genaue Wertigkeit der Uran-Verbindungen mit der Methode der Laser-Fluoreszenz-Spektroskopie nachweisen konnten. Dr. Arnold: "Wir wollen die von uns entdeckten Prozesse nun noch besser verstehen lernen, um dieses Wissen beispielsweise in intelligente Sanierungsprozesse einfließen zu lassen." Dafür werden derzeit die Untersuchungsgeräte weiter verfeinert und verbessert. Jetzt schon können Uran-Partikel und deren genaue chemische Form, in Biofilmen identifiziert werden. Bald schon sollen mit der Fluoreszenz-Spektroskopie auch zeitaufgelöste Informationen zu gelösten Uranverbindungen in Biofilmen möglich sein, so dass die Kombination der beiden Methoden dann sogar zur Untersuchung von Wechselwirkungen von Zellen mit fluoreszierenden Schwermetallen geeignet sein wird.

Veröffentlichung:
K. Großmann, T. Arnold, E. Krawczyk-Bärsch, S. Diessner, A. Wobus, G. Bernhard, R. Krawietz, "Identification of fluorescent U(V) and U(VI) Microparticles in a multispecies biofilm by Confocal Laser Scanning Microscopy and Fluorescence Spectroscopy ", in: Environmental Science & Technology, Vol. 41, No. 18: September 15, 2007.
Weitere Informationen:
Dr. Thuro Arnold
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Radiochemie
Tel.: +49 351 260 - 2432
Email: t.arnold@fzd.de
Prof. Dr. Isolde Röske
Technische Universität Dresden
Lehrstuhl für Angewandte Mikrobiologie
Tel.: +49 351 - 46 33 29 05
Email: roeske_i@rcs.urz.tu-dresden.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD) - Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
Email: c.bohnet@fzd.de
http://www.fzd.de
Information:
Das FZD erbringt wesentliche Beiträge der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zu folgenden Fragestellungen:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Dazu werden 6 Großgeräte eingesetzt, die europaweit einzigartige Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 57 Mill. Euro (Stand: 12/2006). Hinzu kommen etwa 10 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen mehr als 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Berichte zu: Bakterium Biofilm FZD Uran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie