Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handschlag der Moleküle

20.04.2007
Wissenschaftler verfolgen auf der atomaren Skala, wie einzelne Moleküle einander erkennen

Leben ist Teamarbeit im großen Stil: Im menschlichen Körper werkeln tausendmal mehr Moleküle Hand in Hand als Sterne im Weltall leuchten. Wie Moleküle ihre Kooperationspartner erkennen, hat nun ein internationales Wissenschaftlerteam um Forscher vom Max-Planck-Institut für Festkörperforschung beobachtet. Sie verfolgten mit einem Rastertunnelmikroskop, wie sich zwei chirale Dipeptid-Moleküle zu einem Dimer zusammenschlossen. Solche Moleküle liegen wie die allermeisten Moleküle in unserem Körper in zwei spiegelbildlichen Formen vor, die sich wie die rechte und linke Hand nicht zur Deckung bringen lassen. Damit die Dipeptide stabile Paare formen und Biomoleküle die Lebensprozesse aufrecht erhalten können, müssen sich die Moleküle mit passenden Formen erkennen. Wie die Forscher nun herausgefunden haben, verändern sie sich dabei leicht - wie zwei Hände, die sich umeinander schließen. Nach dem Prinzip dieses molekularen Handschlags entstehen darüber hinaus komplexe Materialstrukturen. Die neuen Erkenntnisse helfen auch zu verstehen, wie sie sich im Detail bilden. (Angewandte Chemie, 20. April 2007)


Rastertunnelmikroskopie-Aufnahme von einzelnen L- und D-Diphenylalanin-Molekülen, die auf einer Kupfer-Oberfläche adsorbiert sind. Wie die Moleküle ihre Konformation ändern, während sie sich aneinander lagern, haben Wissenschaftler vom Max-Planck-Institut für Festkörperforschung in Bildsequenzen angeschaut. Bild: Max-Planck-Institut für Festkörperforschung

1027 Moleküle mit nahezu Hunderttausend unterschiedlichen Formen machen unseren Körper zu dem, was er ist. Jedes Molekül trägt eine strukturelle Information, welche die Wechselwirkung mit anderen Molekülen bestimmt und somit die Funktionen des Körpers aufrecht halten lässt. Sie vermitteln den Befehl, dass unsere Muskeln kontrahieren. Sie sorgen dafür, dass wir unsere Nahrung effizient verwerten. Und sie lassen Gedanken entstehen. Das internationale Forscherteam, in dem Wissenschaftler aus dem Stuttgarter Max-Planck-Institut vom Fraunhofer Institut für Werkstoffmechanik in Freiburg und dem King’s College in London zusammenarbeiteten, hat nun untersucht, auf welche Weise sich Moleküle erkennen und wie die im Molekül gespeicherte Information zum Aufbau von komplexen Strukturen verwendet wird.

Die Wissenschaftler vom Max-Planck-Institut für Festkörperforschung haben mit einem Rastertunnelmikroskop im Detail verfolgt, wie zwei Diphenylalanin-Moleküle miteinander wechselwirken, während sie sich aneinanderlagern. Den Prozess hielten die Forscher in Bildsequenzen fest. Aus diesen geht hervor, dass sich nur Moleküle gleicher Chiralität bereitwillig zu Paaren und Ketten zusammenschließen.

Der Begriff der Chiralität leitet sich vom griechischen Wort für Hand ab und beschreibt Moleküle, die wie die linke und rechte Hände in zwei Formen existieren: der rechtshändigen (D-) und der linkshändigen (L-) Form. Sie lassen sich räumlich nicht zur Deckung bringen - im Bild der Hand gesprochen liegen entweder die Handflächen beziehungsweise -rücken aufeinander oder die Daumen zeigen in entgegengesetzte Richtungen. Und nur zwei rechte (oder zwei linke) Hände greifen beim Handschlag passgenau ineinander. Genauso formen auch nur zwei Moleküle derselben chiralen Form eine stabile Struktur.

Wenn Moleküle der rechtshändigen oder linkshändigen Form zueinander finden, sprechen Chemiker von chiraler Erkennung. Sie ist für alle Prozesse in unserem Körper von großer Bedeutung. Denn ein wesentlicher Teil der Information, die etwa Eiweiße bei biochemischen Prozessen austauschen, steckt in der Chiralität, also der exakten räumlichen Anordnung der Molekülbausteine: Ein chirales Molekül kann andere Moleküle mit derselben Chiralität entsprechend den möglichen Kombinationen D/D bzw. L/L erkennen, wohingegen die Kombinationen L/D oder D/L ausgeschlossen sind.

Wie beim Händeschütteln reicht es aber nicht, dass die Moleküle in der komplementären Gestalt zweier rechter oder linker Hände vorliegen. Denn auch Hände greifen nur dann vollständig ineinander, wenn sie sich umeinander schließen. Die Wissenschaftler konnten jetzt erstmals nachweisen, dass sich auch die Formen der beiden Dipeptide bei ihrem molekularen Händedruck dynamisch aneinander anpassen. Dabei induzieren die Moleküle wechselseitig eine Änderung ihrer Konformation. Zu diesem Ergebnis gelangte das Wissenschaftler-Team nicht nur, indem sie den Prozess rastertunnelmikroskopisch untersuchten, sondern auch weil Theoretiker am King’s College in London und am Fraunhofer Institut für Werkstoffmechanik in Freiburg ihn rechnerisch modellierten.

Der Mechanismus chiraler Molekülerkennung, den die Forscher an den Dipeptid-Molekülen beobachteten, trägt wesentlich dazu bei, die Basisschritte der Evolution genauer zu verstehen. Zugleich helfen die Erkenntnisse künstliche, komplexe Materialien mit spezifischen Funktionen zu entwickeln.

Originalveröffentlichung:

Magalí Lingenfelder, Giulia Tomba, Giovanni Costantini, Lucio Colombi Ciacchi, Alessandro De Vita und Klaus Kern; Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single-Molecule Level; Angewandte Chemie, 20. April 2007 (DOI: 10.1002/anie.200700194)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Chiralität Dipeptide Handschlag Max-Planck-Institut Molekül Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie