Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handschlag der Moleküle

20.04.2007
Wissenschaftler verfolgen auf der atomaren Skala, wie einzelne Moleküle einander erkennen

Leben ist Teamarbeit im großen Stil: Im menschlichen Körper werkeln tausendmal mehr Moleküle Hand in Hand als Sterne im Weltall leuchten. Wie Moleküle ihre Kooperationspartner erkennen, hat nun ein internationales Wissenschaftlerteam um Forscher vom Max-Planck-Institut für Festkörperforschung beobachtet. Sie verfolgten mit einem Rastertunnelmikroskop, wie sich zwei chirale Dipeptid-Moleküle zu einem Dimer zusammenschlossen. Solche Moleküle liegen wie die allermeisten Moleküle in unserem Körper in zwei spiegelbildlichen Formen vor, die sich wie die rechte und linke Hand nicht zur Deckung bringen lassen. Damit die Dipeptide stabile Paare formen und Biomoleküle die Lebensprozesse aufrecht erhalten können, müssen sich die Moleküle mit passenden Formen erkennen. Wie die Forscher nun herausgefunden haben, verändern sie sich dabei leicht - wie zwei Hände, die sich umeinander schließen. Nach dem Prinzip dieses molekularen Handschlags entstehen darüber hinaus komplexe Materialstrukturen. Die neuen Erkenntnisse helfen auch zu verstehen, wie sie sich im Detail bilden. (Angewandte Chemie, 20. April 2007)


Rastertunnelmikroskopie-Aufnahme von einzelnen L- und D-Diphenylalanin-Molekülen, die auf einer Kupfer-Oberfläche adsorbiert sind. Wie die Moleküle ihre Konformation ändern, während sie sich aneinander lagern, haben Wissenschaftler vom Max-Planck-Institut für Festkörperforschung in Bildsequenzen angeschaut. Bild: Max-Planck-Institut für Festkörperforschung

1027 Moleküle mit nahezu Hunderttausend unterschiedlichen Formen machen unseren Körper zu dem, was er ist. Jedes Molekül trägt eine strukturelle Information, welche die Wechselwirkung mit anderen Molekülen bestimmt und somit die Funktionen des Körpers aufrecht halten lässt. Sie vermitteln den Befehl, dass unsere Muskeln kontrahieren. Sie sorgen dafür, dass wir unsere Nahrung effizient verwerten. Und sie lassen Gedanken entstehen. Das internationale Forscherteam, in dem Wissenschaftler aus dem Stuttgarter Max-Planck-Institut vom Fraunhofer Institut für Werkstoffmechanik in Freiburg und dem King’s College in London zusammenarbeiteten, hat nun untersucht, auf welche Weise sich Moleküle erkennen und wie die im Molekül gespeicherte Information zum Aufbau von komplexen Strukturen verwendet wird.

Die Wissenschaftler vom Max-Planck-Institut für Festkörperforschung haben mit einem Rastertunnelmikroskop im Detail verfolgt, wie zwei Diphenylalanin-Moleküle miteinander wechselwirken, während sie sich aneinanderlagern. Den Prozess hielten die Forscher in Bildsequenzen fest. Aus diesen geht hervor, dass sich nur Moleküle gleicher Chiralität bereitwillig zu Paaren und Ketten zusammenschließen.

Der Begriff der Chiralität leitet sich vom griechischen Wort für Hand ab und beschreibt Moleküle, die wie die linke und rechte Hände in zwei Formen existieren: der rechtshändigen (D-) und der linkshändigen (L-) Form. Sie lassen sich räumlich nicht zur Deckung bringen - im Bild der Hand gesprochen liegen entweder die Handflächen beziehungsweise -rücken aufeinander oder die Daumen zeigen in entgegengesetzte Richtungen. Und nur zwei rechte (oder zwei linke) Hände greifen beim Handschlag passgenau ineinander. Genauso formen auch nur zwei Moleküle derselben chiralen Form eine stabile Struktur.

Wenn Moleküle der rechtshändigen oder linkshändigen Form zueinander finden, sprechen Chemiker von chiraler Erkennung. Sie ist für alle Prozesse in unserem Körper von großer Bedeutung. Denn ein wesentlicher Teil der Information, die etwa Eiweiße bei biochemischen Prozessen austauschen, steckt in der Chiralität, also der exakten räumlichen Anordnung der Molekülbausteine: Ein chirales Molekül kann andere Moleküle mit derselben Chiralität entsprechend den möglichen Kombinationen D/D bzw. L/L erkennen, wohingegen die Kombinationen L/D oder D/L ausgeschlossen sind.

Wie beim Händeschütteln reicht es aber nicht, dass die Moleküle in der komplementären Gestalt zweier rechter oder linker Hände vorliegen. Denn auch Hände greifen nur dann vollständig ineinander, wenn sie sich umeinander schließen. Die Wissenschaftler konnten jetzt erstmals nachweisen, dass sich auch die Formen der beiden Dipeptide bei ihrem molekularen Händedruck dynamisch aneinander anpassen. Dabei induzieren die Moleküle wechselseitig eine Änderung ihrer Konformation. Zu diesem Ergebnis gelangte das Wissenschaftler-Team nicht nur, indem sie den Prozess rastertunnelmikroskopisch untersuchten, sondern auch weil Theoretiker am King’s College in London und am Fraunhofer Institut für Werkstoffmechanik in Freiburg ihn rechnerisch modellierten.

Der Mechanismus chiraler Molekülerkennung, den die Forscher an den Dipeptid-Molekülen beobachteten, trägt wesentlich dazu bei, die Basisschritte der Evolution genauer zu verstehen. Zugleich helfen die Erkenntnisse künstliche, komplexe Materialien mit spezifischen Funktionen zu entwickeln.

Originalveröffentlichung:

Magalí Lingenfelder, Giulia Tomba, Giovanni Costantini, Lucio Colombi Ciacchi, Alessandro De Vita und Klaus Kern; Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single-Molecule Level; Angewandte Chemie, 20. April 2007 (DOI: 10.1002/anie.200700194)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Chiralität Dipeptide Handschlag Max-Planck-Institut Molekül Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Fettleibigkeit Brustkrebs aggressiver macht
20.10.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher untersuchen Pflanzenkohle als Basis für umweltfreundlichen Langzeitdünger

20.10.2017 | Ökologie Umwelt- Naturschutz

„Antilopen-Parfüm“ hält Fliegen von Kühen fern

20.10.2017 | Agrar- Forstwissenschaften

Aus der Moosfabrik

20.10.2017 | Biowissenschaften Chemie