Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handschlag der Moleküle

20.04.2007
Wissenschaftler verfolgen auf der atomaren Skala, wie einzelne Moleküle einander erkennen

Leben ist Teamarbeit im großen Stil: Im menschlichen Körper werkeln tausendmal mehr Moleküle Hand in Hand als Sterne im Weltall leuchten. Wie Moleküle ihre Kooperationspartner erkennen, hat nun ein internationales Wissenschaftlerteam um Forscher vom Max-Planck-Institut für Festkörperforschung beobachtet. Sie verfolgten mit einem Rastertunnelmikroskop, wie sich zwei chirale Dipeptid-Moleküle zu einem Dimer zusammenschlossen. Solche Moleküle liegen wie die allermeisten Moleküle in unserem Körper in zwei spiegelbildlichen Formen vor, die sich wie die rechte und linke Hand nicht zur Deckung bringen lassen. Damit die Dipeptide stabile Paare formen und Biomoleküle die Lebensprozesse aufrecht erhalten können, müssen sich die Moleküle mit passenden Formen erkennen. Wie die Forscher nun herausgefunden haben, verändern sie sich dabei leicht - wie zwei Hände, die sich umeinander schließen. Nach dem Prinzip dieses molekularen Handschlags entstehen darüber hinaus komplexe Materialstrukturen. Die neuen Erkenntnisse helfen auch zu verstehen, wie sie sich im Detail bilden. (Angewandte Chemie, 20. April 2007)


Rastertunnelmikroskopie-Aufnahme von einzelnen L- und D-Diphenylalanin-Molekülen, die auf einer Kupfer-Oberfläche adsorbiert sind. Wie die Moleküle ihre Konformation ändern, während sie sich aneinander lagern, haben Wissenschaftler vom Max-Planck-Institut für Festkörperforschung in Bildsequenzen angeschaut. Bild: Max-Planck-Institut für Festkörperforschung

1027 Moleküle mit nahezu Hunderttausend unterschiedlichen Formen machen unseren Körper zu dem, was er ist. Jedes Molekül trägt eine strukturelle Information, welche die Wechselwirkung mit anderen Molekülen bestimmt und somit die Funktionen des Körpers aufrecht halten lässt. Sie vermitteln den Befehl, dass unsere Muskeln kontrahieren. Sie sorgen dafür, dass wir unsere Nahrung effizient verwerten. Und sie lassen Gedanken entstehen. Das internationale Forscherteam, in dem Wissenschaftler aus dem Stuttgarter Max-Planck-Institut vom Fraunhofer Institut für Werkstoffmechanik in Freiburg und dem King’s College in London zusammenarbeiteten, hat nun untersucht, auf welche Weise sich Moleküle erkennen und wie die im Molekül gespeicherte Information zum Aufbau von komplexen Strukturen verwendet wird.

Die Wissenschaftler vom Max-Planck-Institut für Festkörperforschung haben mit einem Rastertunnelmikroskop im Detail verfolgt, wie zwei Diphenylalanin-Moleküle miteinander wechselwirken, während sie sich aneinanderlagern. Den Prozess hielten die Forscher in Bildsequenzen fest. Aus diesen geht hervor, dass sich nur Moleküle gleicher Chiralität bereitwillig zu Paaren und Ketten zusammenschließen.

Der Begriff der Chiralität leitet sich vom griechischen Wort für Hand ab und beschreibt Moleküle, die wie die linke und rechte Hände in zwei Formen existieren: der rechtshändigen (D-) und der linkshändigen (L-) Form. Sie lassen sich räumlich nicht zur Deckung bringen - im Bild der Hand gesprochen liegen entweder die Handflächen beziehungsweise -rücken aufeinander oder die Daumen zeigen in entgegengesetzte Richtungen. Und nur zwei rechte (oder zwei linke) Hände greifen beim Handschlag passgenau ineinander. Genauso formen auch nur zwei Moleküle derselben chiralen Form eine stabile Struktur.

Wenn Moleküle der rechtshändigen oder linkshändigen Form zueinander finden, sprechen Chemiker von chiraler Erkennung. Sie ist für alle Prozesse in unserem Körper von großer Bedeutung. Denn ein wesentlicher Teil der Information, die etwa Eiweiße bei biochemischen Prozessen austauschen, steckt in der Chiralität, also der exakten räumlichen Anordnung der Molekülbausteine: Ein chirales Molekül kann andere Moleküle mit derselben Chiralität entsprechend den möglichen Kombinationen D/D bzw. L/L erkennen, wohingegen die Kombinationen L/D oder D/L ausgeschlossen sind.

Wie beim Händeschütteln reicht es aber nicht, dass die Moleküle in der komplementären Gestalt zweier rechter oder linker Hände vorliegen. Denn auch Hände greifen nur dann vollständig ineinander, wenn sie sich umeinander schließen. Die Wissenschaftler konnten jetzt erstmals nachweisen, dass sich auch die Formen der beiden Dipeptide bei ihrem molekularen Händedruck dynamisch aneinander anpassen. Dabei induzieren die Moleküle wechselseitig eine Änderung ihrer Konformation. Zu diesem Ergebnis gelangte das Wissenschaftler-Team nicht nur, indem sie den Prozess rastertunnelmikroskopisch untersuchten, sondern auch weil Theoretiker am King’s College in London und am Fraunhofer Institut für Werkstoffmechanik in Freiburg ihn rechnerisch modellierten.

Der Mechanismus chiraler Molekülerkennung, den die Forscher an den Dipeptid-Molekülen beobachteten, trägt wesentlich dazu bei, die Basisschritte der Evolution genauer zu verstehen. Zugleich helfen die Erkenntnisse künstliche, komplexe Materialien mit spezifischen Funktionen zu entwickeln.

Originalveröffentlichung:

Magalí Lingenfelder, Giulia Tomba, Giovanni Costantini, Lucio Colombi Ciacchi, Alessandro De Vita und Klaus Kern; Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single-Molecule Level; Angewandte Chemie, 20. April 2007 (DOI: 10.1002/anie.200700194)

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Chiralität Dipeptide Handschlag Max-Planck-Institut Molekül Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungsnachrichten

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungsnachrichten

Polarstern ab heute unterwegs nach Spitzbergen, um Rolle der Wolken bei Erwärmung der Arktis zu untersuchen

24.05.2017 | Geowissenschaften