Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht steuert Nervenzellen

05.04.2007
Kommen wir einem grundlegenden Verständnis von Gehirnfunktionen demnächst etwas näher? In einer Kooperation mit Kollegen von der Stanford University und der Universität Frankfurt ist es Wissenschaftlern vom Max-Planck-Institut für Biophysik in Frankfurt gelungen, ein Werkzeug zu entwickeln, mit dem sich Nervenzellen in lebendem Gewebe innerhalb von Millisekunden an- und wieder abschalten lassen.

Als Schalter fungieren dabei ein aus einer Alge stammender lichtaktivierbarer Ionenkanal sowie eine ebenso durch Licht gesteuerte Ionenpumpe aus einem Archaebakterium. Beide gehören zur Klasse der mikrobiellen Rhodopsine, in die - wie beim Sehpurpur im menschlichen Auge - der Chromophor Retinal eingebunden ist. Die entsprechenden Gene wurden in Nervenzellen eingeschleust und führten dort zur Bildung funktioneller Proteine. Durch gezielte Aktivierung der Rhodopsine mit Licht unterschiedlicher Wellenlänge (d.h. Farbe) konnten die Forscher die Zellen unabhängig voneinander an- und abschalten. Durch diese elegante Manipulation der neuronalen Botschaften wird es nun möglich, die Rolle bestimmter Zellen in neuronalen Netzen zu erforschen. Die Wissenschaftler konnten ihr neues Werkzeug bereits am lebenden Tier testen: dem kleinen Fadenwurm C. elegans (Nature, 5. April 2007).


Hippocampus-Neuronen mit Halorhodopsin (NpHR) gekoppelt an einen gelb fluoreszierenden Farbstoff (eYFP) bzw. mit Channelrhodopsin-2 (ChR2) gekoppelt an einen rot fluoreszierenden Farbstoff (mCherry). Bild: Zhang et al., 2007

Das menschliche Gehirn ist das wohl faszinierendste Organ - die Frage, wie Informationen im Gehirn niedergelegt sein könnten und wie das Gehirn auf die Daten in diesem riesigen Informationsspeicher zugreift, beschäftigt die Menschheit schon seit langem. Erkenntnisfortschritte wurden oft mit neuen Techniken gewonnen, zu denen neben den verfeinerten elektrophysiologischen Methoden vor allem bildgebende, sogenannte Imaging-Verfahren gehören. Dennoch fehlte es bisher an geeigneten Werkzeugen, mit denen man Nervenzellen im intakten Hirngewebe nicht-invasiv präzise an- und abschalten kann, um ihren Beitrag im neuronalen Netzwerk nachzuweisen.

Zwei unscheinbare Mikroben haben den Wissenschaftlern vom Max-Planck-Institut für Biophysik in Frankfurt/Main und ihren Kollegen von der Univ. Frankfurt und der Stanford University in USA nun weitergeholfen: Dabei handelt es sich um das Archaebakterium Natronomonas pharaonis sowie die kleine Grünalge Chlamydomonas reinhardtii. Chlamydomonas besitzt einen als Channelrhodopsin-2 bezeichneten Ionenkanal (ChR2), der ursprünglich 2003 am Max-Planck-Institut für Biophysik charakterisiert wurde. Überträgt man das entsprechende Gen per Virus-Shuttle in Nervenzellen, so lässt sich der Kanal dort durch Licht in einem bestimmten Wellenlängenbereich (blau) aktivieren. Der daraus resultierende Einwärtsstrom von Kationen führt zu einer Depolarisation der Zellen und damit zur Auslösung von Aktionspotenzialen (Spikes) - die Nervenzellen werden quasi angeschaltet. Sobald der Lichtpuls aussetzt, schließt sich der Kanal wieder. Die elektrischen Botschaften der Nervenzellen - kodiert in der Spike-Frequenz - können also durch einen einfachen Lichtpuls gesteuert werden. Bereits 2005 hatten Alexander Gottschalk von der Universität Frankfurt, Georg Nagel - damals noch in der Abteilung Biophysikalische Chemie des Max-Planck-Instituts für Biophysik - und Ernst Bamberg (Direktor am MPI für Biophysik) mit ihren jeweiligen Mitarbeitern gezeigt, dass sich auf diese Weise in dem kleinen Fadenwurm Caenorhabditis elegans sogar Verhaltensantworten auslösen lassen.

Diese Vorgehensweise erlaubte jedoch nur eine Aktivierung der Zellen. Auf der Wunschliste der Forscher ganz oben stand daher ein Werkzeug, das es ermöglicht, Nervenzellen mit der gleichen zeitlichen Präzision, nämlich innerhalb von Millisekunden, abzuschalten - und zwar über einen Lichtpuls anderer Farbe. Im Fokus der Forscher: die Chloridpumpe Halorhodopsin. Ernst Bamberg hatte dieses Protein bereits früher mit Hilfe elektrischer Methoden detailliert auf seine Transporteigenschaften untersucht, und Georg Nagel war es in der Folge gelungen, Halorhodopsin aus Natronomonas pharaonis (NpHR) erstmals in tierischen Zellen zu exprimieren. Wurden die Zellen mit gelbem Licht beleuchtet, so kam es zu einem Einwärtsstrom von Chloridionen und infolgedessen zu einer Hyperpolarisation, die Aktionspotenziale hemmt.

Damit war der Grundstein für die vorliegende Nature-Veröffentlichung gelegt. Die Kollegen in Stanford fusionierten das NpHR-Gen mit einem fluoreszierenden Protein (eYFP) und schleusten es wiederum per Virus-Shuttle in kultivierte Hippocampus-Nervenzellen ein. Sie konnten nun mit gelbem Licht einzelne Aktionspotenziale ebenso wie eine ganze Salve von Spikes unterbinden. In einem nächsten Schritt verknüpften sie Channelrhodopsin-2 mit einer rot fluoreszierenden Protein-Variante (mCherry) und koexprimierten den Kanal aus der Alge und die Pumpe aus dem Archaebakterium in Hippocampus-Neuronen. Tatsächlich war es nun möglich, das Membranpotenzial in ein und demselben Neuron in beide Richtungen zu verändern: Blaue Lichtpulse lösten durch Aktivierung von ChR2 Aktionspotenziale aus, während gelbe Lichtpulse durch Aktivierung von NpHR die Aktionspotenziale löschten. "Dabei werden die grundlegenden elektrischen Eigenschaften der Zelle nicht beeinträchtigt", betont Georg Nagel, der heute eine Professur an der Universität Würzburg innehat.

Eine wichtige, noch zu beantwortende Frage war, ob mit diesem System auch das Verhalten eines Tieres in vivo kontrolliert werden kann. Für Channelrhodopsin-2 war das ja bereits für die Taufliege Drosophila und den Fadenwurm C. elegans gezeigt worden. Wieder arbeiteten die Max-Planck-Wissenschaftler mit dem Team des C. elegans-Experten Alexander Gottschalk zusammen. Wurde die Chloridpumpe NpHR in Nerven- oder Muskelzellen von C. elegans exprimiert, so führte Lichtaktivierung zum unmittelbaren Stopp (innerhalb von 150 Millisekunden) der Schwimmbewegungen (siehe Movie 1). Nach Beendigung des Lichtreizes kehrte der kleine Fadenwurm zu seinem natürlichen Schwimmverhalten zurück. "Auch die gemeinsame Expression des Kationenkanals mit der Chloridpumpe in C. elegans war erfolgreich", sagt Gottschalk.

"Das NpHR/ChR2-System erlaubt uns erstmals, Neuronen allein durch Licht auf einer Zeitskala von Millisekunden und mit extrem hoher räumlicher Auflösung, also im Mikrometerbereich, nicht-invasiv an- und abzuschalten. Damit kann durch die geeignete Wahl der Lichtpulssequenz der neuronale Code nachgeahmt oder verändert werden", erklärt Ernst Bamberg. "Wir haben mit den beiden lichtschaltbaren Proteinen den Neurobiologen ein sehr vielseitig anwendbares Werkzeug in die Hand gegeben, mit dem sowohl in neuronalen Zellkulturen als auch in transgenen Tieren völlig neuartige Untersuchungen durchgeführt werden können."

[CB]

Originalveröffentlichung:

Feng Zhang, Li-Ping Wang, Martin Brauner, Jana F. Liewald, Kenneth Kay, Natalie Watzke, Phillip G. Wood, Ernst Bamberg, Georg Nagel, Alexander Gottschalk & Karl Deisseroth; Multimodal fast optical interrogation of neural circuitry
Nature, 5. April 2007

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten