Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Forscher entwickeln neue chemische Analysemethode / Das einzelne Molekül im Visier

22.01.2007
Chemiker um ETH-Professor Renato Zenobi haben ein neues Analyseverfahren entwickelt, das Substanzen mit extrem hoher Empfindlichkeit und Präzision nachweisen kann. Es ermöglicht, einzelne Moleküle auf Oberflächen zuverlässig zu identifizieren. Die ETH-Forscher stellen die neue Methode im "Journal of Physical Chemistry" vor.

Forscher der ETH Zürich haben ein Analyseverfahren entwickelt, das insbesondere für Anwendungen in der Nanotechnologie von grossem Interesse sein dürfte. Wie die Gruppe von ETH-Professor Renato Zenobi in der Fachzeitschrift "Journal of Physical Chemistry" berichtet, gelang es ihr, einzelne Moleküle auf einer Oberfläche zu lokalisieren und chemisch genau zu bestimmen. Damit stösst die chemische Analyse in neue Dimensionen vor. Eine Identifikation auf einem Massstab von gerade mal 10 Nanometern wird durch dieses neue Verfahren möglich.

Chemischer Fingerabdruck

Um einzelne Moleküle nachzuweisen, setzte man bisher auf die Fluoroszenzmethode. Diese ermöglicht allerdings keine absolut zuverlässige Identifikation der gefundenen Substanzen. Die von den ETH-Forschern nun entwickelte Methode basiert hingegen auf der Raman-Spektroskopie, die einen regelrechten Fingerabdruck des Moleküls liefert. Dabei wird die zu untersuchende Probe mit Laserlicht bestrahlt. Der grösste Teil des Lichts wird umgehend reflektiert; ein Teil jedoch wird von den Molekülen absorbiert und anschliessend als klar definierte Ramanstrahlung wieder abgegeben. Misst man diese ausgesendete Strahlung, lässt sich erkennen, welche Substanzen sich auf der Probenoberfläche befinden.

Millionenfache Verstärkung

Das Prinzip dieser Messmethode ist an sich schon lange bekannt. Limitierend war bisher, dass Einzelmoleküle ein zu schwaches Signal aussenden. Den ETH-Forschern gelang es nun aber, mit einer speziellen Versuchsanordnung das Signal massiv zu verstärken. Bereits seit längerem weiss man, dass die Ramanstrahlung intensiver wird, wenn man die Probe auf eine Silber- oder Goldunterlage aufträgt. Einen vergleichbaren Effekt, allerdings mit einer wesentlich kleineren räumlichen Ausdehnung, erreicht man, wenn man während der Messung mit einer Silber- oder Goldspitze über die Probe fährt.

Zenobi gelang es nun, durch die Kombination der beiden Ansätze eine hochauflösende Analysemethode zu entwickeln. Die Probe wird auf eine flache Oberfläche aus Gold aufgebracht. Während der Messung fährt man mit einer Silberspitze, die ähnlich fein ist wie diejenige eines Rasterkraftmikroskops, über die Probe. Zwischen Spitze und Goldunterlage entsteht auf einer Fläche von ungefähr 10 mal 10 Nanometern ein starkes elektrisches Feld, welches das Ramansignal um einen Faktor 107 verstärkt.

Dreifache Bestätigung

Die Forscher konnten anhand von zwei verschiedenen Substanzen zeigen, dass sich mit der Methode grundsätzlich alle Verbindungen nachweisen lassen. Die Wissenschaftler sind sich auch sicher, dass sie mit dem Verfahren tatsächlich einzelne Molekülen nachweisen können. Verdünnt man beispielsweise die Probesubstanz auf der Goldoberfläche, misst man dort, wo noch Moleküle vorhanden sind, immer noch die gleich starken Signale wie vorher. Allerdings gelingt ein Nachweis - wie erwartet - an deutlich weniger Stellen. Für die Präzision des Verfahrens spricht auch, dass die gemessenen Signale über einige Sekunden hinweg betrachtet schwanken. Dies rührt nach Ansicht der Forscher von den Bewegungen der Moleküle her. Würden die gemessenen Ramansignale von einer Ansammlung von Molekülen stammen, würde man keine solche Schwankung erwarten. Ein dritter Hinweis, der zuversichtlich stimmt, ist schliesslich, dass an vereinzelten Stellen das Ramansignal plötzlich unwiderruflich verschwindet. Dies, so erklären die Forscher, geschieht dann, wenn die Moleküle durch das Laserlicht zersetzt werden.

Die Forscher sehen für ihre neue Methode zahlreiche Anwendungsmöglichkeiten. Prinzipiell ist es nun möglich, auf dünnen Materialproben mit hoher Präzision zu bestimmen, wo welche Substanzen vorkommen. Solche Messungen könnten in der Biologie, in der Umweltanalytik, aber auch bei der Herstellung von neuen Materialen hilfreiche Informationen liefern.

Weitere Informationen
ETH Zürich
Prof. Renato Zenobi
Laboratorium für Organische Chemie
Tel: +41 44 632 43 76
E-Mail: zenobi@org.chem.ethz.ch
Korrektur vom 22.01.2007
Weihua Zhang, Boon Siang Yeo, Thomas Schmid, Renato Zenobi: Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips, Journal of Physical Chemistry (2007).

Anke Poiger | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Berichte zu: ETH-Forscher Molekül Probe Präzision Ramansignal Zenobi

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie