Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenschutz für Pflanzen

11.12.2006
Max-Planck-Forscher aus Potsdam finden heraus, dass Entkoppler-Proteine in Pflanzen helfen, schädliche Fehlprodukte der Photosynthese abzufangen

Auch Pflanzen können einen Sonnenbrand kriegen - doch ganz schutzlos sind sie nicht. Wissenschaftler des Max-Planck-Instituts für molekulare Pflanzenphysiologie in Potsdam haben jetzt zusammen mit Kollegen der University of Oxford, Großbritannien, entdeckt, dass ein so genanntes Entkoppler-Protein (UCP) eine wichtige Rolle beim natürlichen Sonnenschutz der Pflanzen spielt. Nur mit UCP funktioniert die Rettungsreaktion reibungslos, die bei hoher Sonneneinwirkung entstandene, schädliche Substanzen entschärft und sogar recycelt. Damit konnten die Forscher erstmals klären, was die in Tier- und Pflanzenwelt weit verbreiteten UCP-Proteine in Pflanzen bewirken (PNAS Online-Edition, 5. Dezember 2006).


Die unscheinbare Ackerschmalwand diente als Modellpflanze. Fehlt UCP, ist ihre Photosynthese eingeschränkt. Bild: Max-Planck-Institut für molekulare Pflanzenphysiologie

Bei zu hoher Sonneneinstrahlung können während der Photosynthese schädliche Verbindungen wie freie Radikale entstehen. Die Wissenschaftler vom Max-Planck-Institut für molekulare Pflanzenphysiologie in Potsdam und der University of Oxford um Dr. Alisdair Fernie haben nun herausgefunden, dass Entkoppler-Proteine (uncoupling proteins, UCP) den pflanzlichen Schutzmechanismus gegen diese gefährlichen Moleküle unterstützen. Bauen Photosynthese-Enzyme unter starker Sonneneinstrahlung Sauerstoff anstatt Kohlendioxid ein, helfen die Entkoppler-Proteine, die schädlichen Fehlprodukte abzubauen und wieder in den Photosynthesezyklus zurückzuführen.

Diese Proteine findet man in Tieren und Pflanzen. Bei vielen Säugetieren sind sie dafür zuständig, Fett unter Erzeugung von Wärme abzubauen - ein Talent, über das erwachsene Menschen nicht verfügen. Ihre physiologische Rolle in Pflanzen war bisher allerdings unbekannt. Wärme erzeugen sie jedenfalls nicht: Selbst Pflanzen, die mit Wärme Insekten anlocken, verwenden dafür andere molekulare Mechanismen.

Um die Aufgabe von UCP-Proteinen in Pflanzen zu ergründen, erzeugten die Wissenschaftler Pflanzen, die diese Proteine nicht mehr in normaler Menge bilden. Als Modellpflanze diente die Ackerschmalwand - das unscheinbare Wildkraut ist für die Pflanzenforscher, was die Maus für den Biomediziner darstellt. Die veränderten Pflanzen bildeten längere Wurzeln, hatten weniger oberirdische Pflanzenteile und nahmen weniger Kohlendioxid auf als ihre normalen Artgenossen- ein deutliches Zeichen für weniger Photosynthese. Eine genauere Untersuchung zeigte, dass sie auf den fälschlichen Einbau von Sauerstoff anstatt Kohlendioxid in der Photosynthese nicht wie normale Pflanzen reagieren.

Bei der Photosynthese unterläuft dem ersten Enzym, das Kohlendioxid bindet, nämlich relativ häufig ein Fehler: Es baut statt Kohlendioxid Sauerstoff ein. Vor allem bei zu hoher Sonneneinstrahlung bekommt das Enzym teilweise nicht genug Kohlendioxid nachgeliefert und greift so zum falschen Molekül. Daraus können gefährliche Nebenprodukte entstehen. Es gibt aber eine Rettungsreaktion, die Photorespiration, die das entstandene Fehlprodukt wieder in den normalen Photosynthesezyklus einfließen lässt.

UCP wirkt dabei an den Mitochondrien auf den Elektronenfluss - eine wichtige Aufgabe, denn bei der rettenden Photorespiration müssen viele Elektronen hin und her geschoben werden. Wenn UCP nicht funktioniert, wie bei den veränderten Pflanzen, liefert die Photorespiration nicht mehr die recycelten Fehlprodukte an den normalen Photosyntheseweg. Dadurch arbeitet auch die Photosynthese nicht mehr optimal: Die Pflanzen wachsen langsamer und können weniger Kohlendioxid aufnehmen.

"Vergleicht man die Rolle von UCP in Säugetieren und Pflanzen, so erhält man ein eindrucksvolles Beispiel dafür, welche unterschiedlichen Aufgaben stammesgeschichtlich sehr ähnliche Proteine im Laufe der Evolution übernehmen können", sagt Alisdair R. Fernie, der Leiter der Arbeitsgruppe.

Originalveröffentlichung:

Lee J. Sweetlove, Anna Lytovchenko, Megan Morgan, Adriano Nunes-Nesi, Nicolas L. Taylor, Charles J. Baxter, Ira Eickmeier, and Alisdair R. Fernie
Mitochondrial uncoupling protein is required for efficient photosynthesis
Proceedings of the National Academy of Sciences, Early Edition, 5 December 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Entkoppler-Protein Kohlendioxid Photosynthese UCP

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut
27.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Elektroimpulse säubern Industriewässer und Lacke
27.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungsnachrichten

Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut

27.04.2017 | Biowissenschaften Chemie

Elektroimpulse säubern Industriewässer und Lacke

27.04.2017 | Biowissenschaften Chemie