Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Fall von Zell-Spionage

22.11.2006
Göttinger Max-Planck-Forscher beobachten mit einem neuen Verfahren, wie komplexe Proteine in lebenden Zellen kommunizieren

Ohne Richtmikrofon und Revolver, aber mit Methoden der Spionage erkunden Wissenschaftler des Max-Planck-Instituts für experimentelle Medizin in Göttingen und der Axaron Bioscience AG in Heidelberg die Informationswege in der Zelle. Mit Hilfe von Spähermolekülen übersetzen die Forscher die Interaktionen löslicher Proteine und komplexer Membranproteine in Lichtsignale, die leicht zu detektieren sind. Auf diese Weise können sie auch in bisher experimentell schwer zugänglich Zellen, etwa Neuronen oder Gliazellen, untersuchen, welche Proteine wann miteinander kommunizieren. Mit dem Verfahren lassen sich Krankheiten erforschen, die unter anderem durch fehlgeleitete Informationen in Zellen ausgelöst werden, wie beispielsweise Krebs oder neurodegenerative Erkrankungen (Nature Methods Dezember 2006, online: 29. Okt. 2006).


Schematische Darstellung der transkriptionsabhängigen Variante des Split-TEV Verfahrens. Der rote Auftraggeber "Nrg" dockt an einem grünen Transmembranprotein an, das sich daraufhin mit einem zweiten Membranprotein (gelb) verbindet, um die Information weiterzuleiten. Dadurch fügt sich auch das Späherenzym an der Zellinnenseite (blau) zusammen und setzen den Transkriptionsspion (GV) frei, der aus der DNA ein fluoreszierendes Molekül synthetisieren lässt. Das sorgt dann für das detektierbare Signal. Bild: Max-Planck-Institut für experimentelle Medizin

Häufig teilen Nachrichtenmoleküle Zellen ihre Aufgaben mit - beispielsweise sich zu teilen oder bestimmte Enzyme zu produzieren. Membranproteine an der Außenseite der Zelle empfangen diese Aufträge, lösliche Proteine leiten sie im Zellinneren weiter. Ist die Kommunikation in der Zelle oder zwischen Zellen gestört, können unter Umständen Krebs oder neurodegenerative Erkrankungen entstehen. Die Therapie dieser Krankheiten würde leichter, wenn Mediziner mehr über diese Informationswege wüssten. Ein Wissenschaftlerteam vom Max-Planck-Institut für experimentelle Medizin in Göttingen und der Axaron Bioscience AG in Heidelberg hat nun eine neue Methode namens Split-TEV entwickelt, um die Stillepost von Protein zu Protein abzuhören. Das Verfahren vereinfacht es enorm, die Interaktion sowohl von löslichen Proteinen als auch von komplexen Membranproteinen zu untersuchen.

Insbesondere die Membranproteine waren bisher nur sehr eingeschränkt zu analysieren. Sie sind besonders interessant, weil an ihnen viele wichtige Nachrichtenkaskaden beginnen und potenzielle Pharmazeutika besonders gut angreifen können. Die sehr empfindliche Methode eignet sich auch, um Zellen zu analysieren, die direkt aus lebendem Gewebe entnommen wurden. Diese sogenannten Primärzellen sind zwar aufwändiger zu handhaben als Zellen, die extra für die Forschung im Labor gezüchtet wurden. Sie stellen aber auch ein weitaus aussagekräftigeres biologisches System dar. Im Gegensatz zu früheren Methoden lassen sich mit der Split-TEV-Technik überdies in automatisierten Analyseverfahren (high-throughput screenings) viele der zahlreichen Proteine und externen Faktoren gleichzeitig testen, die an den Nachrichtenkaskaden in der Zelle beteiligt sind.

Die Forscher greifen bei ihren Untersuchungen auf Tricks der Spionagetechnik zurück: Sie schleusen zwei Spähermoleküle in die Zelle ein. Die beiden Moleküle bilden zusammen ein Enzym des Tabakvirus TEV, das erst aktiv wird, wenn die beiden Teile einander nahe kommen. Die Enzymhälften heften sich nun an zwei zuvor bestimmte Zielproteine. Sobald diese sich treffen, nähern sich auch ihre Späheranhängsel und werden dadurch zu einem funktionsfähigen Enzym. Das vollständige Enzym aktiviert anschließend ein weiteres Protein - ein fluoreszierendes Reportermolekül, das bis jetzt an einem der Agentenmoleküle hing, nun aber abgestoßen wird. Dabei fängt es an zu leuchten und signalisiert den Forschern so: Die Proteine reden miteinander!

Bei einer Variante des Verfahrens leuchtet das Reportermolekül nicht selber. Stattdessen wandert es in den Zellkern und aktiviert ein Gen, das ein fluoreszierendes Molekül kodiert. Die Forscher müssen dieses extra zu diesem Zweck schon vorher in die DNA eingebaut haben. Bei dieser Version gibt das Reportermolekül also nur indirekt ein Signal ab, weil das produzierte Fluoreszenzmolekül leuchtet. Dieses transkriptionsabhängige Verfahren, ist zwar etwas aufwändiger als das direkte, dafür aber erheblich empfindlicher. Es wandelt selbst vorübergehende, kurze Interaktionen in ein andauerndes, deutliches Signal um.

Die Wissenschaftler setzten viele verschiedene fluoreszierende und lumineszierende Reportermoleküle beziehungsweise Gene für zahlreiche Leuchtproteine ein. So können Forscher das Split-TEV-Verfahren sehr flexibel an die vorhandene Analysetechnik und das jeweils untersuchte Proteinsystem anpassen. "Außerdem stehen die für die Aufnahme und Analyse der Lichtsignale benötigten Geräte in den meisten Laboren ohnehin zur Verfügung - ein großer Kostenvorteil für das Verfahren", sagt Moritz Rossner, der Projektleiter.

Seine Arbeitsgruppe will sich vor allem auf die Interaktionen von Neuronen und Gliazellen konzentrieren. Denn mit der Split-TEV Technik ist nun auch die intra- und interzelluläre Kommunikation dieser experimentell schwer zugänglichen Zelltypen gut zu untersuchen. "Außerdem wollen wir das System in Zukunft so weiterentwickeln, dass wir ausgedehnte Netze miteinander kommunizierender Proteine analysieren können", sagt Moritz Rossner.

Originalveröffentlichung:

Michael C. Wehr, Rico Laage, Ulrike Bolz, Tobias M. Fischer, Sylvia Grünewald, Sigrid Scheek, Alfred Bach, Klaus-Armin Nave & Moritz J. Rossner
Monitoring regulated protein-protein interactions using split TEV
Nature Methods, Dezember 2006, online: 29. Okt. 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Enzym Interaktion Membranprotein Protein Reportermolekül Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics