Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Fall von Zell-Spionage

22.11.2006
Göttinger Max-Planck-Forscher beobachten mit einem neuen Verfahren, wie komplexe Proteine in lebenden Zellen kommunizieren

Ohne Richtmikrofon und Revolver, aber mit Methoden der Spionage erkunden Wissenschaftler des Max-Planck-Instituts für experimentelle Medizin in Göttingen und der Axaron Bioscience AG in Heidelberg die Informationswege in der Zelle. Mit Hilfe von Spähermolekülen übersetzen die Forscher die Interaktionen löslicher Proteine und komplexer Membranproteine in Lichtsignale, die leicht zu detektieren sind. Auf diese Weise können sie auch in bisher experimentell schwer zugänglich Zellen, etwa Neuronen oder Gliazellen, untersuchen, welche Proteine wann miteinander kommunizieren. Mit dem Verfahren lassen sich Krankheiten erforschen, die unter anderem durch fehlgeleitete Informationen in Zellen ausgelöst werden, wie beispielsweise Krebs oder neurodegenerative Erkrankungen (Nature Methods Dezember 2006, online: 29. Okt. 2006).


Schematische Darstellung der transkriptionsabhängigen Variante des Split-TEV Verfahrens. Der rote Auftraggeber "Nrg" dockt an einem grünen Transmembranprotein an, das sich daraufhin mit einem zweiten Membranprotein (gelb) verbindet, um die Information weiterzuleiten. Dadurch fügt sich auch das Späherenzym an der Zellinnenseite (blau) zusammen und setzen den Transkriptionsspion (GV) frei, der aus der DNA ein fluoreszierendes Molekül synthetisieren lässt. Das sorgt dann für das detektierbare Signal. Bild: Max-Planck-Institut für experimentelle Medizin

Häufig teilen Nachrichtenmoleküle Zellen ihre Aufgaben mit - beispielsweise sich zu teilen oder bestimmte Enzyme zu produzieren. Membranproteine an der Außenseite der Zelle empfangen diese Aufträge, lösliche Proteine leiten sie im Zellinneren weiter. Ist die Kommunikation in der Zelle oder zwischen Zellen gestört, können unter Umständen Krebs oder neurodegenerative Erkrankungen entstehen. Die Therapie dieser Krankheiten würde leichter, wenn Mediziner mehr über diese Informationswege wüssten. Ein Wissenschaftlerteam vom Max-Planck-Institut für experimentelle Medizin in Göttingen und der Axaron Bioscience AG in Heidelberg hat nun eine neue Methode namens Split-TEV entwickelt, um die Stillepost von Protein zu Protein abzuhören. Das Verfahren vereinfacht es enorm, die Interaktion sowohl von löslichen Proteinen als auch von komplexen Membranproteinen zu untersuchen.

Insbesondere die Membranproteine waren bisher nur sehr eingeschränkt zu analysieren. Sie sind besonders interessant, weil an ihnen viele wichtige Nachrichtenkaskaden beginnen und potenzielle Pharmazeutika besonders gut angreifen können. Die sehr empfindliche Methode eignet sich auch, um Zellen zu analysieren, die direkt aus lebendem Gewebe entnommen wurden. Diese sogenannten Primärzellen sind zwar aufwändiger zu handhaben als Zellen, die extra für die Forschung im Labor gezüchtet wurden. Sie stellen aber auch ein weitaus aussagekräftigeres biologisches System dar. Im Gegensatz zu früheren Methoden lassen sich mit der Split-TEV-Technik überdies in automatisierten Analyseverfahren (high-throughput screenings) viele der zahlreichen Proteine und externen Faktoren gleichzeitig testen, die an den Nachrichtenkaskaden in der Zelle beteiligt sind.

Die Forscher greifen bei ihren Untersuchungen auf Tricks der Spionagetechnik zurück: Sie schleusen zwei Spähermoleküle in die Zelle ein. Die beiden Moleküle bilden zusammen ein Enzym des Tabakvirus TEV, das erst aktiv wird, wenn die beiden Teile einander nahe kommen. Die Enzymhälften heften sich nun an zwei zuvor bestimmte Zielproteine. Sobald diese sich treffen, nähern sich auch ihre Späheranhängsel und werden dadurch zu einem funktionsfähigen Enzym. Das vollständige Enzym aktiviert anschließend ein weiteres Protein - ein fluoreszierendes Reportermolekül, das bis jetzt an einem der Agentenmoleküle hing, nun aber abgestoßen wird. Dabei fängt es an zu leuchten und signalisiert den Forschern so: Die Proteine reden miteinander!

Bei einer Variante des Verfahrens leuchtet das Reportermolekül nicht selber. Stattdessen wandert es in den Zellkern und aktiviert ein Gen, das ein fluoreszierendes Molekül kodiert. Die Forscher müssen dieses extra zu diesem Zweck schon vorher in die DNA eingebaut haben. Bei dieser Version gibt das Reportermolekül also nur indirekt ein Signal ab, weil das produzierte Fluoreszenzmolekül leuchtet. Dieses transkriptionsabhängige Verfahren, ist zwar etwas aufwändiger als das direkte, dafür aber erheblich empfindlicher. Es wandelt selbst vorübergehende, kurze Interaktionen in ein andauerndes, deutliches Signal um.

Die Wissenschaftler setzten viele verschiedene fluoreszierende und lumineszierende Reportermoleküle beziehungsweise Gene für zahlreiche Leuchtproteine ein. So können Forscher das Split-TEV-Verfahren sehr flexibel an die vorhandene Analysetechnik und das jeweils untersuchte Proteinsystem anpassen. "Außerdem stehen die für die Aufnahme und Analyse der Lichtsignale benötigten Geräte in den meisten Laboren ohnehin zur Verfügung - ein großer Kostenvorteil für das Verfahren", sagt Moritz Rossner, der Projektleiter.

Seine Arbeitsgruppe will sich vor allem auf die Interaktionen von Neuronen und Gliazellen konzentrieren. Denn mit der Split-TEV Technik ist nun auch die intra- und interzelluläre Kommunikation dieser experimentell schwer zugänglichen Zelltypen gut zu untersuchen. "Außerdem wollen wir das System in Zukunft so weiterentwickeln, dass wir ausgedehnte Netze miteinander kommunizierender Proteine analysieren können", sagt Moritz Rossner.

Originalveröffentlichung:

Michael C. Wehr, Rico Laage, Ulrike Bolz, Tobias M. Fischer, Sylvia Grünewald, Sigrid Scheek, Alfred Bach, Klaus-Armin Nave & Moritz J. Rossner
Monitoring regulated protein-protein interactions using split TEV
Nature Methods, Dezember 2006, online: 29. Okt. 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Enzym Interaktion Membranprotein Protein Reportermolekül Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik