Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum es Babypopos und Tunnel trocken hält

10.10.2006
Professoren der Fachhochschule und RWTH Aachen
erforschen im DFG-Projekt physikalische und chemische Eigenschaften von Hydrogelen

Die wohl bekannteste Anwendung der sogenannten Hydrogele, ist der Einsatz als Superabsorber in Babywindeln und Hygieneartikeln. Allerdings ist damit nur ein Bruchteil des Potenzials dieser zukunftsträchtigen und vielversprechenden Materialien ausgeschöpft. Die Ursache dafür ist vor allem, dass sowohl die chemischen als auch die physikalischen Zusammenhänge noch weitgehend unerforscht sind. Im Rahmen des Schwerpunktprogramms "Intelligente Hydrogele" der Deutschen Forschungsgemeinschaft (DFG) erforscht Prof. Dr. Thomas Mang vom Institut für angewandte Polymerchemie der Fachhochschule Aachen in Kooperation mit Dr. Siegfried Stapf vom Institut für Technische und Makromolekulare Chemie (ITMC) der RWTH Aachen unter anderem den Einfluss von Salzen, Säuren Temperatur-oder Konzentrationsveränderungen auf die Hydrogele.

"Dieses Pulver nimmt tausend mal so viel Flüssigkeit auf, wie es selbst wiegt", deutet Prof. Thomas Mang auf den handgroßen Becher im Regal der dunklen Vorratskammer. Auf den ersten Blick sehen die Körner auf den ersten Blick aus wie ganz normales Kochsalz. Aber das weiße Pulver kann mehr, wie der Leiter des Instituts für angewandte Polymerchemie (IAP) der Fachhochschule Aachen in nur wenigen Sekunden beweist. Vorsichtig schüttet der Chemiker das Granulat in ein Glas voll Wasser und wippt es hin und her. Dabei schlürft die durchsichtige Substanz das Wasser regelrecht auf und quillt zu einer wackelpuddingartigen Masse auf.

Die wohl bekannteste Anwendung dieser sogenannten Hydrogele, ist der Einsatz als Superabsorber in Babywindeln und Hygieneartikeln. Allerdings ist damit nur ein Bruchteil des Potenzials dieser zukunftsträchtigen und vielversprechenden Materialien ausgeschöpft. Die Ursache dafür ist vor allem, dass sowohl die chemischen als auch die physikalischen Zusammenhänge noch weitgehend unerforscht sind. Im Rahmen des Schwerpunktprogramms "Intelligente Hydrogele" der Deutschen Forschungsgemeinschaft (DFG) erforscht Prof. Mang in Kooperation mit Dr. Siegfried Stapf vom Institut für Technische und Makromolekulare Chemie (ITMC) der RWTH Aachen unter anderem den Einfluss von Salzen, Säuren Temperatur- oder Konzentrationsveränderungen auf die Hydrogele.

Derzeit fördert die DFG insgesamt 16 Schwerpunktprogramme, die der deutschlandweiten und internationalen Vernetzung von Forschungsaktivitäten in einem umgrenzten Themengebiet dienen sollen. "Wir wollen die Struktur verstehen und wissen welche Bindungen wann möglich sind", lautet das gemeinsame Ziel. Während im IAP vor allem die Synthese der Hydrogele im Vordergrund steht, analysieren die Forscher im ITMC die physikalischen Eigenschaften der Hydrogele. In einem der weltweit bedeutendsten Zentren für Magnetische Resonanz (MARC) testen die Physiker mittels Kernresonanzspektroskopie die Struktur und Beweglichkeit der Substanz unter den verschiedensten Umweltbedingungen, wie Licht-, Temperatur-, Säure-, Salzverhältnissen.

Chemisch gesehen gleichen die wasserunlöslichen Molekülketten der Hydrogele einem Wollknäuel, dass an vielen Stellen mit sich selbst vernetzt ist. Auf Grund dieser chemischen Struktur quellen oder schrumpfen die aus Acrylsäure bestehenden Gele bei Änderungen der Temperatur, Salzkonzentration, pH-Werte oder elektrischen Felder. Weil sie auf äußere Reize reagieren, bezeichnen Wissenschaftler die Substanz auch als "intelligente" Materialien.

"Noch verstehen wir nicht vollständig, warum das Material in salzigem Wasser manchmal nur unzureichend quillt und sogar nach einiger Zeit die Wirkung wieder verliert", so Mang. Aber der Forscher nähert sich dem Problem systematisch. Durch wiederholte Versuchsanordnungen mit nur kleinen Veränderungen will er den genauen Zusammenhang zwischen der Materialstruktur und der Reaktion ermitteln. Auf diese Weise wäre der genaue Quellgrad bei veränderten Bedingungen demnächst vorhersehbar.

Seit über zehn Jahren arbeitet Mang bereits am Einsatz von Hydrogelen, insbesondere von stark wasseraufnehmenden Substanzen. Aus seiner Forschung
resultierten bereits Quellgummis und Quellpasten, die Tunnel gegen von außen drückendes Wasser abdichten. Beim Bau der Rheinuferstraße in Düsseldorf setzten die Baufirmen beispielsweise die Gummis zum Abdichten bereits ein. Aber auch an den in Babywindeln eingesetzten Saugmaterialien hat der Professor mitgewirkt.

Allerdings tauchen immer wieder bei bestimmten Anwendungen Probleme auf: so quellen Materialien z.B. in Meerwasser nur unzureichend, wodurch sie ihre Abdichtwirkung verlieren. Die Ausarbeitung weiterer neuer Anwendungen scheitert dabei immer wieder an unzureichenden Kenntnissen die wissenschaftliche Grundlagen betreffen.
Hier setzt das DFG-Projekt an: Durch die Erforschung der genauen Eigenschaften von Hydrogelen sind in Zukunft auch weitere Einsatzmöglichkeiten denkbar. So hoffen die Wissenschaftler beispielsweise, dass Wirkstoffe zur Bekämpfung von Krebs in aufheizbaren, magnetischen Hydrogel-Nanokugeln gepackt und dadurch ganz gezielt im Körper freigesetzt werden können. "Durch die DFG haben wir nun die Möglichkeit die theoretischen Grundlagen zu erforschen, denn

Hydrogele können viel mehr, als nur Babypopos trocken halten", so Mang.

(FH Aachen, Pressestelle - Cornelia Driesen)

Dr. Roger Uhle | idw
Weitere Informationen:
http://www.fh-aachen.de

Weitere Berichte zu: Babywindeln DFG Hydrogele Hydrogelen ITMC RWTH Schwerpunktprogramm Tunnel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften