Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum es Babypopos und Tunnel trocken hält

10.10.2006
Professoren der Fachhochschule und RWTH Aachen
erforschen im DFG-Projekt physikalische und chemische Eigenschaften von Hydrogelen

Die wohl bekannteste Anwendung der sogenannten Hydrogele, ist der Einsatz als Superabsorber in Babywindeln und Hygieneartikeln. Allerdings ist damit nur ein Bruchteil des Potenzials dieser zukunftsträchtigen und vielversprechenden Materialien ausgeschöpft. Die Ursache dafür ist vor allem, dass sowohl die chemischen als auch die physikalischen Zusammenhänge noch weitgehend unerforscht sind. Im Rahmen des Schwerpunktprogramms "Intelligente Hydrogele" der Deutschen Forschungsgemeinschaft (DFG) erforscht Prof. Dr. Thomas Mang vom Institut für angewandte Polymerchemie der Fachhochschule Aachen in Kooperation mit Dr. Siegfried Stapf vom Institut für Technische und Makromolekulare Chemie (ITMC) der RWTH Aachen unter anderem den Einfluss von Salzen, Säuren Temperatur-oder Konzentrationsveränderungen auf die Hydrogele.

"Dieses Pulver nimmt tausend mal so viel Flüssigkeit auf, wie es selbst wiegt", deutet Prof. Thomas Mang auf den handgroßen Becher im Regal der dunklen Vorratskammer. Auf den ersten Blick sehen die Körner auf den ersten Blick aus wie ganz normales Kochsalz. Aber das weiße Pulver kann mehr, wie der Leiter des Instituts für angewandte Polymerchemie (IAP) der Fachhochschule Aachen in nur wenigen Sekunden beweist. Vorsichtig schüttet der Chemiker das Granulat in ein Glas voll Wasser und wippt es hin und her. Dabei schlürft die durchsichtige Substanz das Wasser regelrecht auf und quillt zu einer wackelpuddingartigen Masse auf.

Die wohl bekannteste Anwendung dieser sogenannten Hydrogele, ist der Einsatz als Superabsorber in Babywindeln und Hygieneartikeln. Allerdings ist damit nur ein Bruchteil des Potenzials dieser zukunftsträchtigen und vielversprechenden Materialien ausgeschöpft. Die Ursache dafür ist vor allem, dass sowohl die chemischen als auch die physikalischen Zusammenhänge noch weitgehend unerforscht sind. Im Rahmen des Schwerpunktprogramms "Intelligente Hydrogele" der Deutschen Forschungsgemeinschaft (DFG) erforscht Prof. Mang in Kooperation mit Dr. Siegfried Stapf vom Institut für Technische und Makromolekulare Chemie (ITMC) der RWTH Aachen unter anderem den Einfluss von Salzen, Säuren Temperatur- oder Konzentrationsveränderungen auf die Hydrogele.

Derzeit fördert die DFG insgesamt 16 Schwerpunktprogramme, die der deutschlandweiten und internationalen Vernetzung von Forschungsaktivitäten in einem umgrenzten Themengebiet dienen sollen. "Wir wollen die Struktur verstehen und wissen welche Bindungen wann möglich sind", lautet das gemeinsame Ziel. Während im IAP vor allem die Synthese der Hydrogele im Vordergrund steht, analysieren die Forscher im ITMC die physikalischen Eigenschaften der Hydrogele. In einem der weltweit bedeutendsten Zentren für Magnetische Resonanz (MARC) testen die Physiker mittels Kernresonanzspektroskopie die Struktur und Beweglichkeit der Substanz unter den verschiedensten Umweltbedingungen, wie Licht-, Temperatur-, Säure-, Salzverhältnissen.

Chemisch gesehen gleichen die wasserunlöslichen Molekülketten der Hydrogele einem Wollknäuel, dass an vielen Stellen mit sich selbst vernetzt ist. Auf Grund dieser chemischen Struktur quellen oder schrumpfen die aus Acrylsäure bestehenden Gele bei Änderungen der Temperatur, Salzkonzentration, pH-Werte oder elektrischen Felder. Weil sie auf äußere Reize reagieren, bezeichnen Wissenschaftler die Substanz auch als "intelligente" Materialien.

"Noch verstehen wir nicht vollständig, warum das Material in salzigem Wasser manchmal nur unzureichend quillt und sogar nach einiger Zeit die Wirkung wieder verliert", so Mang. Aber der Forscher nähert sich dem Problem systematisch. Durch wiederholte Versuchsanordnungen mit nur kleinen Veränderungen will er den genauen Zusammenhang zwischen der Materialstruktur und der Reaktion ermitteln. Auf diese Weise wäre der genaue Quellgrad bei veränderten Bedingungen demnächst vorhersehbar.

Seit über zehn Jahren arbeitet Mang bereits am Einsatz von Hydrogelen, insbesondere von stark wasseraufnehmenden Substanzen. Aus seiner Forschung
resultierten bereits Quellgummis und Quellpasten, die Tunnel gegen von außen drückendes Wasser abdichten. Beim Bau der Rheinuferstraße in Düsseldorf setzten die Baufirmen beispielsweise die Gummis zum Abdichten bereits ein. Aber auch an den in Babywindeln eingesetzten Saugmaterialien hat der Professor mitgewirkt.

Allerdings tauchen immer wieder bei bestimmten Anwendungen Probleme auf: so quellen Materialien z.B. in Meerwasser nur unzureichend, wodurch sie ihre Abdichtwirkung verlieren. Die Ausarbeitung weiterer neuer Anwendungen scheitert dabei immer wieder an unzureichenden Kenntnissen die wissenschaftliche Grundlagen betreffen.
Hier setzt das DFG-Projekt an: Durch die Erforschung der genauen Eigenschaften von Hydrogelen sind in Zukunft auch weitere Einsatzmöglichkeiten denkbar. So hoffen die Wissenschaftler beispielsweise, dass Wirkstoffe zur Bekämpfung von Krebs in aufheizbaren, magnetischen Hydrogel-Nanokugeln gepackt und dadurch ganz gezielt im Körper freigesetzt werden können. "Durch die DFG haben wir nun die Möglichkeit die theoretischen Grundlagen zu erforschen, denn

Hydrogele können viel mehr, als nur Babypopos trocken halten", so Mang.

(FH Aachen, Pressestelle - Cornelia Driesen)

Dr. Roger Uhle | idw
Weitere Informationen:
http://www.fh-aachen.de

Weitere Berichte zu: Babywindeln DFG Hydrogele Hydrogelen ITMC RWTH Schwerpunktprogramm Tunnel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie