Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum es Babypopos und Tunnel trocken hält

10.10.2006
Professoren der Fachhochschule und RWTH Aachen
erforschen im DFG-Projekt physikalische und chemische Eigenschaften von Hydrogelen

Die wohl bekannteste Anwendung der sogenannten Hydrogele, ist der Einsatz als Superabsorber in Babywindeln und Hygieneartikeln. Allerdings ist damit nur ein Bruchteil des Potenzials dieser zukunftsträchtigen und vielversprechenden Materialien ausgeschöpft. Die Ursache dafür ist vor allem, dass sowohl die chemischen als auch die physikalischen Zusammenhänge noch weitgehend unerforscht sind. Im Rahmen des Schwerpunktprogramms "Intelligente Hydrogele" der Deutschen Forschungsgemeinschaft (DFG) erforscht Prof. Dr. Thomas Mang vom Institut für angewandte Polymerchemie der Fachhochschule Aachen in Kooperation mit Dr. Siegfried Stapf vom Institut für Technische und Makromolekulare Chemie (ITMC) der RWTH Aachen unter anderem den Einfluss von Salzen, Säuren Temperatur-oder Konzentrationsveränderungen auf die Hydrogele.

"Dieses Pulver nimmt tausend mal so viel Flüssigkeit auf, wie es selbst wiegt", deutet Prof. Thomas Mang auf den handgroßen Becher im Regal der dunklen Vorratskammer. Auf den ersten Blick sehen die Körner auf den ersten Blick aus wie ganz normales Kochsalz. Aber das weiße Pulver kann mehr, wie der Leiter des Instituts für angewandte Polymerchemie (IAP) der Fachhochschule Aachen in nur wenigen Sekunden beweist. Vorsichtig schüttet der Chemiker das Granulat in ein Glas voll Wasser und wippt es hin und her. Dabei schlürft die durchsichtige Substanz das Wasser regelrecht auf und quillt zu einer wackelpuddingartigen Masse auf.

Die wohl bekannteste Anwendung dieser sogenannten Hydrogele, ist der Einsatz als Superabsorber in Babywindeln und Hygieneartikeln. Allerdings ist damit nur ein Bruchteil des Potenzials dieser zukunftsträchtigen und vielversprechenden Materialien ausgeschöpft. Die Ursache dafür ist vor allem, dass sowohl die chemischen als auch die physikalischen Zusammenhänge noch weitgehend unerforscht sind. Im Rahmen des Schwerpunktprogramms "Intelligente Hydrogele" der Deutschen Forschungsgemeinschaft (DFG) erforscht Prof. Mang in Kooperation mit Dr. Siegfried Stapf vom Institut für Technische und Makromolekulare Chemie (ITMC) der RWTH Aachen unter anderem den Einfluss von Salzen, Säuren Temperatur- oder Konzentrationsveränderungen auf die Hydrogele.

Derzeit fördert die DFG insgesamt 16 Schwerpunktprogramme, die der deutschlandweiten und internationalen Vernetzung von Forschungsaktivitäten in einem umgrenzten Themengebiet dienen sollen. "Wir wollen die Struktur verstehen und wissen welche Bindungen wann möglich sind", lautet das gemeinsame Ziel. Während im IAP vor allem die Synthese der Hydrogele im Vordergrund steht, analysieren die Forscher im ITMC die physikalischen Eigenschaften der Hydrogele. In einem der weltweit bedeutendsten Zentren für Magnetische Resonanz (MARC) testen die Physiker mittels Kernresonanzspektroskopie die Struktur und Beweglichkeit der Substanz unter den verschiedensten Umweltbedingungen, wie Licht-, Temperatur-, Säure-, Salzverhältnissen.

Chemisch gesehen gleichen die wasserunlöslichen Molekülketten der Hydrogele einem Wollknäuel, dass an vielen Stellen mit sich selbst vernetzt ist. Auf Grund dieser chemischen Struktur quellen oder schrumpfen die aus Acrylsäure bestehenden Gele bei Änderungen der Temperatur, Salzkonzentration, pH-Werte oder elektrischen Felder. Weil sie auf äußere Reize reagieren, bezeichnen Wissenschaftler die Substanz auch als "intelligente" Materialien.

"Noch verstehen wir nicht vollständig, warum das Material in salzigem Wasser manchmal nur unzureichend quillt und sogar nach einiger Zeit die Wirkung wieder verliert", so Mang. Aber der Forscher nähert sich dem Problem systematisch. Durch wiederholte Versuchsanordnungen mit nur kleinen Veränderungen will er den genauen Zusammenhang zwischen der Materialstruktur und der Reaktion ermitteln. Auf diese Weise wäre der genaue Quellgrad bei veränderten Bedingungen demnächst vorhersehbar.

Seit über zehn Jahren arbeitet Mang bereits am Einsatz von Hydrogelen, insbesondere von stark wasseraufnehmenden Substanzen. Aus seiner Forschung
resultierten bereits Quellgummis und Quellpasten, die Tunnel gegen von außen drückendes Wasser abdichten. Beim Bau der Rheinuferstraße in Düsseldorf setzten die Baufirmen beispielsweise die Gummis zum Abdichten bereits ein. Aber auch an den in Babywindeln eingesetzten Saugmaterialien hat der Professor mitgewirkt.

Allerdings tauchen immer wieder bei bestimmten Anwendungen Probleme auf: so quellen Materialien z.B. in Meerwasser nur unzureichend, wodurch sie ihre Abdichtwirkung verlieren. Die Ausarbeitung weiterer neuer Anwendungen scheitert dabei immer wieder an unzureichenden Kenntnissen die wissenschaftliche Grundlagen betreffen.
Hier setzt das DFG-Projekt an: Durch die Erforschung der genauen Eigenschaften von Hydrogelen sind in Zukunft auch weitere Einsatzmöglichkeiten denkbar. So hoffen die Wissenschaftler beispielsweise, dass Wirkstoffe zur Bekämpfung von Krebs in aufheizbaren, magnetischen Hydrogel-Nanokugeln gepackt und dadurch ganz gezielt im Körper freigesetzt werden können. "Durch die DFG haben wir nun die Möglichkeit die theoretischen Grundlagen zu erforschen, denn

Hydrogele können viel mehr, als nur Babypopos trocken halten", so Mang.

(FH Aachen, Pressestelle - Cornelia Driesen)

Dr. Roger Uhle | idw
Weitere Informationen:
http://www.fh-aachen.de

Weitere Berichte zu: Babywindeln DFG Hydrogele Hydrogelen ITMC RWTH Schwerpunktprogramm Tunnel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik