Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebenden Zellen bei der Arbeit zuschauen

14.07.2006
Forscher können heute lebenden Zellen bei der Arbeit zuschauen und Strukturen von wenigen millionstel Millimetern erkennen. Möglich geworden ist das durch technische Weiterentwicklungen in der Lichtmikroskopie. Auch haben die Forscher gelernt, in der Natur vorkommende fluoreszierende Proteine, wie das grün fluoreszierende Protein (GFP) der Qualle, als Farbstoff weiter zu entwickeln.

Zu den fundamentalen Lebensprozessen in Zellen, die Forscher jetzt beobachten können, gehören zum Beispiel die Verdopplung der Erbsubstanz DNA vor der Zellteilung, die Reparatur geschädigter DNA, das Umschreiben der Geninformation, aber auch die Entwicklung einer einzelnen Blutstammzelle aus einer embryonalen Stammzelle. Wie die "biomolekularen Maschinen" - Komplexe aus einer Reihe von Proteinen oder Nukleinsäuren - funktionieren, ist für die biomedizinische Forschung von großer Bedeutung. Sie standen im Mittelpunkt eines internationalen Symposiums, das das Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch und die Universität Heidelberg gemeinsam veranstaltet haben. Organisatoren waren Dr. M. Cristina Cardoso (MDC) und Prof. Christoph Cremer (Universität Heidelberg). Zu dem Symposium, das Teil eines Schwerpunktprogramms der Deutschen Forschungsgemeinschaft (DFG) ist, waren Mitte Juli 2006 rund 150 Wissenschaftler aus der ganzen Welt in das Max Delbrück Communications Center (MDC.C) nach Berlin-Buch gekommen.


Moderne wissenschaftiche Kameras sind empfindlich und schnell genug, um Bilder von frei beweglichen, einzelnen Molekülen aufzunehmen. Damit können erstmalig physiologische Prozesse in lebenden Zellen in Echtzeit auf der Ebene einzelner Moleküle beobachtet werden. Die Grafik zeigt die Bewegungen einzelner fluoreszierender Proteinmoleküle (die vier kleineren Signale im Vordergrund) und einzelner "Quantenpunkte" (größere Signale im Hintergrund) in Zeitabständen von 3/1000 Sekunden. (Grafik: Ulrich Kubitscheck; in: Grünwald, D., A. Hoekstra, T. Dange, V. Buschmann, and U. Kubitscheck. 2006. Direct Observation of Single Protein Molecules in Aqueous Solution. ChemPhy

Zellen sind die kleinsten lebenden Einheiten von Menschen, Pflanzen und Tieren. Sie sind etwa 10 bis 20 Mikrometer groß (1 Mikrometer = 1/1000 Millimeter). Die Erforschung lebender Zellen ist nur mit Hilfe der Lichtmikroskopie möglich. Die Auflösungsgrenze der Lichtmikroskopie war bis Anfang der 90er Jahre durch die Wellenlänge des Lichtes begrenzt und betrug rund 200 Nanometer (nm), wie der Jenaer Physiker Ernst Abbe bereits 1873 postuliert hatte. Ein Nanometer entspricht einem millionstel Millimeter.

Viele biomedizinisch relevante zelluläre Strukturen sind aber in der Regel kleiner als 200 nm und konnten somit nicht untersucht werden. Technische Weiterentwicklungen in jüngster Zeit haben jedoch die Auflösung des Lichtmikroskops erheblich erhöht. Dazu gehören die konfokale Fluoreszenzmikroskopie und höchstauflösende Mikroskope (Nanoskopie). Mit den besten derzeitigen lichtoptischen Verfahren können Forscher jetzt fundamentale Strukturen in einzelnen Zellen mit einer Auflösung von wenigen 10 Nanometer analysieren. Prof. Cremer wies darauf hin, dass Präzisionsgeräte zur optischen Analyse hauptsächlich in Europa entwickelt werden und der Bau dieser Geräte besonders in Deutschland stark vertreten ist.

Leuchtkraft fluoreszierender Farbstoffe lässt sich jetzt erhöhen
Prof. Konstantin A. Lukyanov von der Russischen Akademie der Wissenschaften in Moskau berichtete auf dem Berliner Symposium, dass jetzt so genannte lichtaktivierbare fluoreszierende Farbstoffe (engl. Abk: PAFPs) entwickelt werden konnten, deren Leuchtkraft "drastisch" erhöht werden kann, wenn die damit markierte Zelle oder Zellstruktur mit Licht einer bestimmten Wellenlänge bestrahlt wird. Damit sei es noch besser als bisher möglich, lebende Zellen, Organellen und Proteine "optisch" zu markieren und zu beobachten.

Erstmals sei es auch gelungen, so Prof. Lukyanov weiter, ein so genanntes phototoxisches fluoreszierendes Protein auf der Basis eines Quallenproteins zu entwickeln und es gezielt einzusetzen. Bisher schätzten Forscher solche Proteine nicht sehr, da sie den unerwünschten Nebeneffekt hatten, ihre Proben zu zerstören. Genau diese Fähigkeit will sich Prof. Lukyanov jedoch zunutze machen. "Jetzt eröffnet sich die Möglichkeit, Zellen, die mit diesem Protein markiert sind, gezielt mit Licht einer bestimmten Wellenlänge zu zerstören und bestimmte Proteine zu inaktivieren", sagte er. "Vorausgesetzt es gelingt, das Protein mit Hilfe viraler Vektoren direkt in solide Tumoren einzubringen, können Tumorzellen mit Licht zerstört werden". Doch noch steht die Forschung mit phototoxischen Proteinen ganz am Anfang.

Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Straße 10
13125 Berlin
Tel.: 0049/30/94 06 - 38 96
Fax: 0049/30/94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Farbstoff Lichtmikroskopie Millimeter Nanometer Protein Wellenlänge

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie