Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebenden Zellen bei der Arbeit zuschauen

14.07.2006
Forscher können heute lebenden Zellen bei der Arbeit zuschauen und Strukturen von wenigen millionstel Millimetern erkennen. Möglich geworden ist das durch technische Weiterentwicklungen in der Lichtmikroskopie. Auch haben die Forscher gelernt, in der Natur vorkommende fluoreszierende Proteine, wie das grün fluoreszierende Protein (GFP) der Qualle, als Farbstoff weiter zu entwickeln.

Zu den fundamentalen Lebensprozessen in Zellen, die Forscher jetzt beobachten können, gehören zum Beispiel die Verdopplung der Erbsubstanz DNA vor der Zellteilung, die Reparatur geschädigter DNA, das Umschreiben der Geninformation, aber auch die Entwicklung einer einzelnen Blutstammzelle aus einer embryonalen Stammzelle. Wie die "biomolekularen Maschinen" - Komplexe aus einer Reihe von Proteinen oder Nukleinsäuren - funktionieren, ist für die biomedizinische Forschung von großer Bedeutung. Sie standen im Mittelpunkt eines internationalen Symposiums, das das Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch und die Universität Heidelberg gemeinsam veranstaltet haben. Organisatoren waren Dr. M. Cristina Cardoso (MDC) und Prof. Christoph Cremer (Universität Heidelberg). Zu dem Symposium, das Teil eines Schwerpunktprogramms der Deutschen Forschungsgemeinschaft (DFG) ist, waren Mitte Juli 2006 rund 150 Wissenschaftler aus der ganzen Welt in das Max Delbrück Communications Center (MDC.C) nach Berlin-Buch gekommen.


Moderne wissenschaftiche Kameras sind empfindlich und schnell genug, um Bilder von frei beweglichen, einzelnen Molekülen aufzunehmen. Damit können erstmalig physiologische Prozesse in lebenden Zellen in Echtzeit auf der Ebene einzelner Moleküle beobachtet werden. Die Grafik zeigt die Bewegungen einzelner fluoreszierender Proteinmoleküle (die vier kleineren Signale im Vordergrund) und einzelner "Quantenpunkte" (größere Signale im Hintergrund) in Zeitabständen von 3/1000 Sekunden. (Grafik: Ulrich Kubitscheck; in: Grünwald, D., A. Hoekstra, T. Dange, V. Buschmann, and U. Kubitscheck. 2006. Direct Observation of Single Protein Molecules in Aqueous Solution. ChemPhy

Zellen sind die kleinsten lebenden Einheiten von Menschen, Pflanzen und Tieren. Sie sind etwa 10 bis 20 Mikrometer groß (1 Mikrometer = 1/1000 Millimeter). Die Erforschung lebender Zellen ist nur mit Hilfe der Lichtmikroskopie möglich. Die Auflösungsgrenze der Lichtmikroskopie war bis Anfang der 90er Jahre durch die Wellenlänge des Lichtes begrenzt und betrug rund 200 Nanometer (nm), wie der Jenaer Physiker Ernst Abbe bereits 1873 postuliert hatte. Ein Nanometer entspricht einem millionstel Millimeter.

Viele biomedizinisch relevante zelluläre Strukturen sind aber in der Regel kleiner als 200 nm und konnten somit nicht untersucht werden. Technische Weiterentwicklungen in jüngster Zeit haben jedoch die Auflösung des Lichtmikroskops erheblich erhöht. Dazu gehören die konfokale Fluoreszenzmikroskopie und höchstauflösende Mikroskope (Nanoskopie). Mit den besten derzeitigen lichtoptischen Verfahren können Forscher jetzt fundamentale Strukturen in einzelnen Zellen mit einer Auflösung von wenigen 10 Nanometer analysieren. Prof. Cremer wies darauf hin, dass Präzisionsgeräte zur optischen Analyse hauptsächlich in Europa entwickelt werden und der Bau dieser Geräte besonders in Deutschland stark vertreten ist.

Leuchtkraft fluoreszierender Farbstoffe lässt sich jetzt erhöhen
Prof. Konstantin A. Lukyanov von der Russischen Akademie der Wissenschaften in Moskau berichtete auf dem Berliner Symposium, dass jetzt so genannte lichtaktivierbare fluoreszierende Farbstoffe (engl. Abk: PAFPs) entwickelt werden konnten, deren Leuchtkraft "drastisch" erhöht werden kann, wenn die damit markierte Zelle oder Zellstruktur mit Licht einer bestimmten Wellenlänge bestrahlt wird. Damit sei es noch besser als bisher möglich, lebende Zellen, Organellen und Proteine "optisch" zu markieren und zu beobachten.

Erstmals sei es auch gelungen, so Prof. Lukyanov weiter, ein so genanntes phototoxisches fluoreszierendes Protein auf der Basis eines Quallenproteins zu entwickeln und es gezielt einzusetzen. Bisher schätzten Forscher solche Proteine nicht sehr, da sie den unerwünschten Nebeneffekt hatten, ihre Proben zu zerstören. Genau diese Fähigkeit will sich Prof. Lukyanov jedoch zunutze machen. "Jetzt eröffnet sich die Möglichkeit, Zellen, die mit diesem Protein markiert sind, gezielt mit Licht einer bestimmten Wellenlänge zu zerstören und bestimmte Proteine zu inaktivieren", sagte er. "Vorausgesetzt es gelingt, das Protein mit Hilfe viraler Vektoren direkt in solide Tumoren einzubringen, können Tumorzellen mit Licht zerstört werden". Doch noch steht die Forschung mit phototoxischen Proteinen ganz am Anfang.

Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Straße 10
13125 Berlin
Tel.: 0049/30/94 06 - 38 96
Fax: 0049/30/94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/ueber_das_mdc/presse/index.htm

Weitere Berichte zu: Farbstoff Lichtmikroskopie Millimeter Nanometer Protein Wellenlänge

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften