Maßgeschneiderte Kleider von Bakterien und Pilzen – Genetiker der TU Dresden stellen biologische Oberflächen her

Einige Bakterienarten werden von so genannten S-Layern (engl.: surface layer – Oberflächenschicht) als äußerste Schicht umgeben. Diese membranartige Hülle aus spezifischen Eiweißen bildet eine Oberfläche mit exakter Geometrie und wenige Nanometer kleinen Poren. Wenn man die Mikroorganismen mit bestimmten Chemikalien behandelt, kann der Proteinmantel abgestreift und isoliert werden.

Die Besonderheit ist, dass sich die isolierten Proteinbausteine unter geeigneten Bedingungen erneut zusammenlagern und die für die Bakterienhülle typische symmetrische Gitterstruktur wieder entsteht. Auch Proteinschichten, die sich auf der Oberfläche von bestimmten Pilzen befinden, lagern sich im Reagenzglas wieder zu Membranstrukturen zusammen. Zudem besitzen diese so genannten Hydrophobinproteine die Eigenschaft, sich an Wasser abweisenden Oberflächen anzulagern.

Die Dresdner Genetiker nutzen gentechnische Verfahren, um maßgeschneiderte S-Layer und Hydrophobine zu erzeugen. Dazu werden zunächst die entsprechenden Gene isoliert und in Hefen oder anderen Bakterien für eine effiziente Bildung von Oberflächenschichten eingesetzt. In weiteren Schritten verändert man Gene so, dass bei S-Layern bzw. Hydrophobinen neue Eigenschaften entstehen, ohne die Bildung regelmäßiger Proteinschichten zu beeinträchtigen.

S-Layer- und Hydrophobinschichten sind für technische Anwendungen von großem Interesse. So gelang es beispielsweise der Arbeitsgruppe von Wolfgang Pompe, Professor für Materialwissenschaft und Nanotechnik an der TUD, einen bestimmten S-Layer als Grundlage für die Abscheidung von Edelmetallclustern im Nanobereich einzusetzen – möglicherweise eine Option für Katalysatoren. Mit gentechnisch modifizierten Varianten könnte die Metallbindung wesentlich verbessert werden. Im Fall der Hydrophobine scheint insbesondere der Ansatz, sie mit Enzymen zu verbinden, viel versprechend zu sein. Solche Fusionsproteine an Wasser abweisenden Flächen könnten z. B. zur Katalyse biochemischer Prozesse eingesetzt werden.

Weitere Informationen: Prof. Dr. Gerhard Rödel, Tel. 0351 463-36210, E-Mail: Gerhard.Roedel@tu-dresden.de

Media Contact

Kim-Astrid Magister idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer