Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen Lichtenergie umwandeln: Anders als gedacht

03.07.2006
Lehrbuchmeinung muss korrigiert werden
PNAS berichtet: Photosynthese im Detail erforscht

Die ersten Schritte des Prozesses der Photosynthese laufen anders ab als bisher angenommen. Das haben Biologen der RUB-Arbeitsgruppe von Prof. Dr. Matthias Rögner in Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Bioorganische Chemie (AG Prof. Dr. Alfred Holzwarth) herausgefunden. Im Detail geht es um die Frage, in welcher Reihenfolge sich die ersten Prozesse der Photosynthese abspielen, die in Zeitbereichen von wenigen Picosekunden ablaufen (1 ps = 10-12 Sekunden). Über ihre Ergebnisse berichten die Forscher im renommierten US-Journal "Proceedings of the National Academy of Sciences" (PNAS 103 (2006) 6895-6900).


Der Prozess der Photosynthese findet in den inneren Membranen eines Cyanobakteriums (l. oben) analog zum Prozess in allen grünen Pflanzen statt. Aus diesen Membranen (Mitte) wird das Photosystem 2, welches im Licht Wasser spalten kann, isoliert und charakterisiert (r. unten: 3-D-Struktur des Proteins).


Im Inneren von Photosystem 2: Nach Auftreffen eines Lichtquants konnten drei Elektronentransferschritte im unteren Picosekundenbereich unterschieden werden. Noch schneller vollzieht sich die Übertragung der Anregungsenergie von den Chlorophyllantennen im peripheren Bereich (CP43 und CP47) zum Reaktionszentrum ("Trap").

Nanomaschine spaltet Wasser

Was passiert eigentlich, wenn Sonnenlicht auf eine Pflanze trifft? Wie laufen die Vorgänge der Umwandlung der Lichtenergie auf molekularer Ebene ab und was können wir daraus lernen, um die hohe Effizienz dieser natürlichen Vorgänge gewinnbringend zu kopieren? Dieser Frage widmen sich die Forscher um Prof. Rögner in enger Kooperation mit Prof. Holzwarth, dessen Arbeitsgruppe eine von sehr wenigen ist, die solche Prozesse zeitlich auflösen kann. Die Messungen erfordern neben hochsensitiven Apparaturen große Mengen extrem reinen Proteins, in diesem Fall des Photosystems 2 (PS2). PS2 führt den zentralen Prozess der Photosynthese durch, die lichtinduzierte Wasserspaltung. Die Bochumer Forscher isolierten das Protein aus Cyanobakterien, den einfachsten "Modellpflanzen" (s. Abb. 1). "Obwohl die dreidimensionale Struktur von PS2, gewissermaßen sein 'Bauplan', seit Jahren bekannt ist, blieb die Funktion dieser 'Nanomaschine' im molekularen Bereich, die hauptsächlich über spektroskopische Untersuchungen aufgelöst werden kann, umstritten", erklärt Prof. Rögner. Die jetzt erschienene Publikation des Bochumer und Mülheimer Forscherverbundes könnte einen wesentlichen Beitrag zum Verständnis dieser Prozesse liefern und sie im wahrsten Sinne des Wortes in einem neuen Licht erscheinen lassen.

Ein Chlorophyll, das niemand auf der Rechnung hatte

Im Wesentlichen haben die Forscher zwei zentrale Erkenntnisse gewonnen, die den bisherigen Wissensstand fundamental korrigieren: Der erste Reaktionsschritt im Zentrum von PS2 wird von einem einzelnen Chlorophyll (ChlD1 in Abb. 2) durchgeführt, welches nach bisheriger Überzeugung nicht dafür eingeplant war. "Obwohl es sehr nahe am bisher für das eigentliche Reaktionszentrum gehaltenen Chlorophyll-Paar - das analoge Pigmentpaar in den Reaktionszentren von photosynthetischen Bakterien wird als "spezielles Paar" bezeichnet - liegt, hatte es niemand 'auf seiner Rechnung'", blickt Rögner zurück. Mit der aktuellen Arbeit konnten die Forscher erstmals den experimentellen Beweis dafür unter physiologischen Raumtemperaturbedingungen erbringen (s. Abb. 2). "Folglich muss das Lehrbuchwissen der Photosynthese in dieser Hinsicht korrigiert werden, zumal es sich um ein Prinzip zu handeln scheint, welches die Natur offensichtlich auch im anderen Photosystem, dem Photosystem 1, und darüber hinaus auch bei allen höheren Pflanzen angewandt hat", erklärt der Biologe.

Hohe Oxidationskraft verstehen

Die Spaltung von Wasser in Sauerstoff und Protonen - d.h. die zentrale Funktion für die Speicherung von Solarenergie in der Photosynthese - erfordert die höchste Oxidationskraft, die biologischen Systemen bekannt ist. Die neuen Erkenntnisse der Mülheimer und Bochumer Forscher liefern nun die molekulare Erklärung für die bisher nicht gut verstandene extrem hohe Oxidationskraft von Photosystem 2. Ein monomeres Chlorophyll kann prinzipiell eine wesentlich höhere Oxidationskraft entwickeln als das bisher angenommene "Spezialpaar Chlorophyll".

Weiterleitung ist schneller als Gradientenaufbau

Die zweite zentrale Erkenntnis betrifft den Prozess der Weiterleitung der Lichtanregung: Sie verläuft wesentlich rascher als der Prozess der ersten "chemischen" Reaktion, d.h. der Aufbau eines elektrischen Gradienten über der Membran. Jedes PS2 besitzt eine große Antenne aus vielen Chlorophyllen, welche die Lichtenergie sehr effektiv einfangen und praktisch verlustfrei zu den relativ wenigen Reaktionszentrenchlorophyllen ("Trap") weiterleiten. Für die effektive Ausnutzung der Lichtenergie ist die Beantwortung der Frage wichtig, welcher der beiden Prozesse - Weiterleitung der Lichtanregung oder Aufbau des elektrischen Gradienten - der limitierende ist. Die durchgeführten Untersuchungen zeigen eindeutig, dass die Energieübertragung von den Antennen zum Zentrum der schnellere und damit nicht der limitierende Schritt ist.

Neues Bild der Photosynthese

Zusammengenommen ergibt sich durch diese Erkenntnisse ein neues Bild der primären Vorgänge der Photosynthese. Es wird sicher auch Auswirkungen auf sog. biomimetische Verfahren haben, mit welchen die natürlichen Prozesse künstlich "nachgebaut" werden sollen, um die Solarenergie als unerschöpfliche Energiequelle durch Nachahmung der Natur wesentlich effektiver nutzen zu können als es heute mit Sonnenkollektoren möglich ist.

Titelaufnahme

A. R. Holzwarth, M. G. Müller, M. Reus, M. Nowaczyk, J. Sander, and M. Rögner: Kinetics and mechanism of electron transfer in intact Photosystem 2 and in the isolated reaction center: Pheophytin is the primary electron acceptor. In: PNAS Vol. 103 (2006) S. 6895-6900

Weitere Informationen

Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23634, Fax: 0234/32-14322, E-Mail: matthias.roegner@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.bpf.ruhr-uni-bochum.de

Weitere Berichte zu: Chlorophyll Lichtenergie Oxidationskraft PS2 Photosynthese Photosystem Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie