Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen Lichtenergie umwandeln: Anders als gedacht

03.07.2006
Lehrbuchmeinung muss korrigiert werden
PNAS berichtet: Photosynthese im Detail erforscht

Die ersten Schritte des Prozesses der Photosynthese laufen anders ab als bisher angenommen. Das haben Biologen der RUB-Arbeitsgruppe von Prof. Dr. Matthias Rögner in Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Bioorganische Chemie (AG Prof. Dr. Alfred Holzwarth) herausgefunden. Im Detail geht es um die Frage, in welcher Reihenfolge sich die ersten Prozesse der Photosynthese abspielen, die in Zeitbereichen von wenigen Picosekunden ablaufen (1 ps = 10-12 Sekunden). Über ihre Ergebnisse berichten die Forscher im renommierten US-Journal "Proceedings of the National Academy of Sciences" (PNAS 103 (2006) 6895-6900).


Der Prozess der Photosynthese findet in den inneren Membranen eines Cyanobakteriums (l. oben) analog zum Prozess in allen grünen Pflanzen statt. Aus diesen Membranen (Mitte) wird das Photosystem 2, welches im Licht Wasser spalten kann, isoliert und charakterisiert (r. unten: 3-D-Struktur des Proteins).


Im Inneren von Photosystem 2: Nach Auftreffen eines Lichtquants konnten drei Elektronentransferschritte im unteren Picosekundenbereich unterschieden werden. Noch schneller vollzieht sich die Übertragung der Anregungsenergie von den Chlorophyllantennen im peripheren Bereich (CP43 und CP47) zum Reaktionszentrum ("Trap").

Nanomaschine spaltet Wasser

Was passiert eigentlich, wenn Sonnenlicht auf eine Pflanze trifft? Wie laufen die Vorgänge der Umwandlung der Lichtenergie auf molekularer Ebene ab und was können wir daraus lernen, um die hohe Effizienz dieser natürlichen Vorgänge gewinnbringend zu kopieren? Dieser Frage widmen sich die Forscher um Prof. Rögner in enger Kooperation mit Prof. Holzwarth, dessen Arbeitsgruppe eine von sehr wenigen ist, die solche Prozesse zeitlich auflösen kann. Die Messungen erfordern neben hochsensitiven Apparaturen große Mengen extrem reinen Proteins, in diesem Fall des Photosystems 2 (PS2). PS2 führt den zentralen Prozess der Photosynthese durch, die lichtinduzierte Wasserspaltung. Die Bochumer Forscher isolierten das Protein aus Cyanobakterien, den einfachsten "Modellpflanzen" (s. Abb. 1). "Obwohl die dreidimensionale Struktur von PS2, gewissermaßen sein 'Bauplan', seit Jahren bekannt ist, blieb die Funktion dieser 'Nanomaschine' im molekularen Bereich, die hauptsächlich über spektroskopische Untersuchungen aufgelöst werden kann, umstritten", erklärt Prof. Rögner. Die jetzt erschienene Publikation des Bochumer und Mülheimer Forscherverbundes könnte einen wesentlichen Beitrag zum Verständnis dieser Prozesse liefern und sie im wahrsten Sinne des Wortes in einem neuen Licht erscheinen lassen.

Ein Chlorophyll, das niemand auf der Rechnung hatte

Im Wesentlichen haben die Forscher zwei zentrale Erkenntnisse gewonnen, die den bisherigen Wissensstand fundamental korrigieren: Der erste Reaktionsschritt im Zentrum von PS2 wird von einem einzelnen Chlorophyll (ChlD1 in Abb. 2) durchgeführt, welches nach bisheriger Überzeugung nicht dafür eingeplant war. "Obwohl es sehr nahe am bisher für das eigentliche Reaktionszentrum gehaltenen Chlorophyll-Paar - das analoge Pigmentpaar in den Reaktionszentren von photosynthetischen Bakterien wird als "spezielles Paar" bezeichnet - liegt, hatte es niemand 'auf seiner Rechnung'", blickt Rögner zurück. Mit der aktuellen Arbeit konnten die Forscher erstmals den experimentellen Beweis dafür unter physiologischen Raumtemperaturbedingungen erbringen (s. Abb. 2). "Folglich muss das Lehrbuchwissen der Photosynthese in dieser Hinsicht korrigiert werden, zumal es sich um ein Prinzip zu handeln scheint, welches die Natur offensichtlich auch im anderen Photosystem, dem Photosystem 1, und darüber hinaus auch bei allen höheren Pflanzen angewandt hat", erklärt der Biologe.

Hohe Oxidationskraft verstehen

Die Spaltung von Wasser in Sauerstoff und Protonen - d.h. die zentrale Funktion für die Speicherung von Solarenergie in der Photosynthese - erfordert die höchste Oxidationskraft, die biologischen Systemen bekannt ist. Die neuen Erkenntnisse der Mülheimer und Bochumer Forscher liefern nun die molekulare Erklärung für die bisher nicht gut verstandene extrem hohe Oxidationskraft von Photosystem 2. Ein monomeres Chlorophyll kann prinzipiell eine wesentlich höhere Oxidationskraft entwickeln als das bisher angenommene "Spezialpaar Chlorophyll".

Weiterleitung ist schneller als Gradientenaufbau

Die zweite zentrale Erkenntnis betrifft den Prozess der Weiterleitung der Lichtanregung: Sie verläuft wesentlich rascher als der Prozess der ersten "chemischen" Reaktion, d.h. der Aufbau eines elektrischen Gradienten über der Membran. Jedes PS2 besitzt eine große Antenne aus vielen Chlorophyllen, welche die Lichtenergie sehr effektiv einfangen und praktisch verlustfrei zu den relativ wenigen Reaktionszentrenchlorophyllen ("Trap") weiterleiten. Für die effektive Ausnutzung der Lichtenergie ist die Beantwortung der Frage wichtig, welcher der beiden Prozesse - Weiterleitung der Lichtanregung oder Aufbau des elektrischen Gradienten - der limitierende ist. Die durchgeführten Untersuchungen zeigen eindeutig, dass die Energieübertragung von den Antennen zum Zentrum der schnellere und damit nicht der limitierende Schritt ist.

Neues Bild der Photosynthese

Zusammengenommen ergibt sich durch diese Erkenntnisse ein neues Bild der primären Vorgänge der Photosynthese. Es wird sicher auch Auswirkungen auf sog. biomimetische Verfahren haben, mit welchen die natürlichen Prozesse künstlich "nachgebaut" werden sollen, um die Solarenergie als unerschöpfliche Energiequelle durch Nachahmung der Natur wesentlich effektiver nutzen zu können als es heute mit Sonnenkollektoren möglich ist.

Titelaufnahme

A. R. Holzwarth, M. G. Müller, M. Reus, M. Nowaczyk, J. Sander, and M. Rögner: Kinetics and mechanism of electron transfer in intact Photosystem 2 and in the isolated reaction center: Pheophytin is the primary electron acceptor. In: PNAS Vol. 103 (2006) S. 6895-6900

Weitere Informationen

Prof. Dr. Matthias Rögner, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23634, Fax: 0234/32-14322, E-Mail: matthias.roegner@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.bpf.ruhr-uni-bochum.de

Weitere Berichte zu: Chlorophyll Lichtenergie Oxidationskraft PS2 Photosynthese Photosystem Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise