Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Schaltwerk der Zelle in 3D

16.11.2001


Abb. 1: Die Kerndomäne (G-Domäne) des GTP-bindenden Proteins Ras. Markiert in cyan und grün sind die "switch"-Regionen, die sich stark ändern, wenn GDP gegen GTP ausgetauscht wird. Die Motive DxxG, NKxD, SAK und der P-loop sind an der Nukleotidbindung beteiligt, wichtige Wechselwirkungen zu GTP (in schwarz) sind angedeutet. Weiterhin eingezeichnet sind das gamma-Phosphat (rot) und das Magnesiumion (hellblauer Ball).


Abb. 2: Überlagerung verschiedener GTP-bindender Proteine, die alle die G-Domäne gemeinsam haben (dicker gelber Wurm, die "switch"-Regionen sind wieder in cyan und grün markiert). Man erkennt, wie unterschiedlich die "Anbauteile" an die G-Domäne sind. Der Name des Proteins ist jeweils in gleicher Farbe angegeben.
Grafiken: Max-Planck-Institut für molekulare Physiologie


Dortmunder Max-Planck-Wissenschaftler erläutern Funktion und Struktur eines für die innere Regulation von Zellen zentralen Steuerelements

Wissenschaftler vom Max-Planck-Institut für molekulare Physiologie in Dortmund beschreiben in der internationalen Fachzeitschrift "Science" die Steuerung von Signalketten in lebenden Zellen durch sogenannte GTP-bindende Proteine. Diese "molekularen Schalter" finden sich als steuernde Elemente bei einer Vielzahl ganz unterschiedlicher Signalprozesse in der Zelle. Fallen sie als regulative Einheiten aus oder arbeiten sie nicht exakt, so kann das eine Vielzahl von Krankheiten, wie z.B. Krebs, auslösen.

Eine Zelle ist ein ungeheuer komplexes System. Mehr als fünfzigtausend unterschiedliche Proteine arbeiten mehr oder weniger gleichzeitig an mindestens genauso vielen verschiedenen Regulations- und Stoffwechselprozessen. Substanzen müssen produziert, transportiert oder entsorgt werden. Das Zellskelett wird je nach Bedarf auf- und abgebaut, um es an die jeweilige Umgebung anzupassen. Gleichzeitig muss die Zelle auf Signale von außen - etwa aus dem Blutstrom - richtig reagieren, um beispielsweise eine Zellteilung zu veranlassen. Doch wie schafft es diese biochemische "Fabrik", all ihre Prozesse so zu koordinieren, dass kein Chaos entsteht? Was verhindert, dass kritische Prozesse wie die Zellteilung außer Kontrolle geraten und so zur Entstehung von Tumoren beitragen?

Fortschritte in der Röntgenstrukturanalyse in den letzten Jahren haben erstmals auch zu einem besseres Verständnis der Zellregulation geführt: Von vielen biologisch bedeutsamen Makromolekülen, die an der Regulation der Zellteilung bzw. des Zellstoffwechsels, der Proteinsynthese, des Zytoskeletts, des Kerntransports und des Vesikeltransports beteiligt sind, wurde mittlerweile die dreidimensionale Struktur bis in atomare Details hinein entschlüsselt.

Dr. Ingrid Vetter und Prof. Alfred Wittinghofer vom Max-Planck-Institut für molekulare Physiologie, Dortmund haben den derzeitigen Kenntnisstand über die Steuer- und Regelungsmechanismen in lebenden Zellen zusammengefasst. Von zentraler Bedeutung für die meisten dieser Mechanismen sind Proteine, die die kleinen Moleküle GTP bzw. GDP (Guanosintriphosphat bzw. -diphosphat) binden und deshalb Guaninnukleotid-bindende Proteine (GNBPs) heißen. Allen Guaninnukleotid-bindenden Proteinen gemeinsam ist ein "Kern" mit einer konservierten Struktur, die sogenannte G-Domäne. Hier wird das GTP bzw. GDP gebunden (vgl. Abb. 1). Um diesen Kern herum befinden sich je nach Funktion des jeweiligen Guaninnukleotid-bindenden Proteins - wie in einem Baukastensystem - weitere Proteindomänen (vgl. Abb. 2). Die kleinen Proteine funktionieren dann quasi wie ein Werkzeug, das ganz unterschiedliche Aufgaben ausführen kann, je nachdem welcher Adapter angefügt wird.

Das energiereiche GTP (Guanosintriphosphat) hat die Funktion, den GNBPs eine bestimmte, dreidimensionale Struktur aufzuprägen, die sich deutlich von derjenigen unterscheidet, in der GDP (Guanosindiphosphat) gebunden ist. GTP enthält im Unterschied zu GDP eine dritte Phosphatgruppe, das so genannte gamma-Phosphat. Dieses wirkt wie ein Haken, der eine gespannte Feder hält: Wird das gamma-Phosphat abgespalten, lösen sich bestimmte Teile des Proteins, die zuvor chemisch fixiert waren. Dieser Mechanismus existiert in allen durch GNBPs regulierten Prozessen, wobei diese Prozesse im Detail sehr unterschiedlich sein können: Bei den "kleinen GNBPs" und den so genannten heterotrimeren G-Proteinen kann im Zustand, in dem GTP gebunden ist, z.B. ein Signal zur Zellteilung oder zur Einleitung des Sehprozesses oder einer anderen Sinneswahrnehmung weitergeleitet werden. Dabei bindet das Auslöser-Molekül an das aktivierte GNBP. In dem Zustand, in dem GDP gebunden ist, wird durch die jetzt vorliegende Konformation diese Bindung ausgeschlossen - und das Signal kann nicht weitergeleitet werden. Beim Zellkerntransport bestimmt die Verteilung der GTP-gebundenen Form eines bestimmten GNBPs die Richtung, ob bestimmte Substrate in den Zellkern hinein oder heraus transportiert werden, und liefert so die Triebkraft für diesen Prozess. Bei den Faktoren, die an der Proteinsynthese beteiligt sind, wird die durch den GTP/GDP-Wechsel hervorgerufene, kleine Konformationsänderung dazu benutzt, über einen Hebelarm aus zusätzlichen Proteinteilen eine große Bewegung hervorzurufen. Dies hat durchaus Ähnlichkeit zur Bewegung von Motorproteinen, z.B. dem Myosin im Muskel, zu denen auch tatsächlich ein Verwandtschaftsverhältnis besteht.

Die GNBPs sind also molekulare Schalter, die je nachdem, welches Nukleotid (GTP oder GDP) gebunden ist, zwischen einem "Aus" und einem "Ein"-Zustand hin- und herschalten. Es ist offensichtlich, dass der Ein- und Ausschaltvorgang genau reguliert sein muss, um keine falschen oder zeitlich nicht genau abgestimmten Signale zu übertragen. Diese Aufgabe wird wiederum von speziellen Proteinen übernommen, den GTPase-aktivierenden Proteinen (GAPs) bzw. den Guaninnukleotid-austauschenden Proteinen (GEFs, guanine nucleotide exchange factors). GEFs schalten die GNBPs an, indem sie GDP gegen GTP austauschen. Hierbei setzen sie verschiedene Mechanismen ein, und auch die Strukturen der unterschiedlichen GEFs sind - im Gegensatz zur konservierten GTP-bindenden Kernstruktur - sehr unterschiedlich. GAPs schalten die GNBPs durch eine Beschleunigung der GTP-Hydrolyse (die spontan sehr langsam ist) wieder aus, wiederum mit mindestens zwei verschiedenen Mechanismen und mit Hilfe sehr unterschiedlicher Strukturen. Für diese Prozesse konnten die Wissenschaftler allgemeine, übergeordnete Prinzipien definieren.

Die in den letzten Jahren entschlüsselten dreidimensionalen Strukturen haben also gezeigt, dass die Kerndomäne der GNBPs ein "Thema mit Variationen" ist. Ein konservierter Schalter fungiert als zentrales Bauteil, das nach dem Baukastenprinzip über verschiedene "Anbauteile" mit einer Vielzahl von anderen Proteinen in Wechselwirkung treten kann. Dank dieser Flexibilität können GNBPs zentrale Aufgaben in der Zelle steuern. Viele Details dieses Mechanismus sind noch nicht verstanden, doch einige der Zellregulation zugrundeliegenden Prinzipien konnten von den Max-Planck-Wissenschaftlern herausgearbeitet werden. Sie werden der Erforschung der GNBPs weitere Impulse geben.

Prof. Dr. Alfred Wittinghofer | Presseinformation

Weitere Berichte zu: GDP GNBP GTP Protein Prozess Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten