Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurze Stoffwechselketten lassen Bakterien schneller wachsen

09.05.2006
Bakterien nutzen Nahrung nicht optimal

Manche Bakterien gehen sehr ineffizient mit ihrem Brennstoff um. So wurde bislang noch kein Mikroorganismus entdeckt, der Ammoniak direkt in Nitrat umwandeln kann: Die Arbeit wird augenscheinlich immer unter mehreren Bakteriengruppen verteilt. Obwohl diese Tatsache schon seit 1890 bekannt ist, wurde dafür erst jetzt eine Erklärung gefunden. Biologen der Universitäten Bonn und Barcelona haben herausgefunden, dass Bakterien schneller wachsen, wenn die Stoffwechselwege kürzer sind und dass daher viele Stoffwechselketten in Arbeitsteilung durchgeführt werden. Die Forscher glauben jedoch, dass es in der Natur auch "Komplettverwerter" geben müsse. Ihre Erkenntnisse wurden jetzt in der Zeitschrift "Trends in Microbiology" veröffentlicht.


In Biofilmen ist das Nahrungsangebot begrenzt

Dass ein kurzer Stoffwechselweg Bakterien schneller wachsen lässt hat zwei Gründe. "Jeder Stoffwechselschritt wird durch ein Enzym katalysiert. Je mehr verschiedenartige Enzyme gebraucht werden, desto weniger Kopien können in derselben Zeit von jedem Enzym gemacht werden", erklärt Biologe Jan-Ulrich Kreft im pressetext-Interview. "Folglich sinkt der Durchsatz durch die Stoffwechselkette bei mehreren Schritten". Dazu kommt, dass bei einer längeren Kette mehr Zwischenprodukte verloren gehen. Diese stören die geregelten Abläufe in der Zelle und wirken giftig, was den Durchatz noch zusätzlich bremst. Bakterien, die sich die Arbeit teilen und dadurch eine kürzere Stoffwechselkette haben, wachsen aus diesen beiden Gründen schneller als "Komplettverwerter".

Neben Vorteilen hat ein kurzer Stoffwechselweg jedoch auch einen Nachteil: Die Bakterien benutzen ihre Nahrung nicht optimal. Wenn Nahrung ein knappes Gut ist, können sich Bakterien diesen Luxus nicht leisten. Das Nahrungsangebot in Biofilmen, wo die Bakterien mit ihren Nachbarn interagieren, ist begrenzt. Wenn nun ein Bakterium die Nahrung unvollständig nutzt, um dadurch schneller wachsen zu können, dann nimmt in seiner Umgebung die Nährstoffkonzentration stärker ab. "Gerade in Biofilmen ist es wichtig, dass die Bakterien die Resourcen sparsam verwerten, so dass für ihre Nachbarn mehr übrig bleibt", so Kreft gegenüber pressetext. "Um Komplettverwerter zu finden, muss man daher wahrscheinlich in Biofilmen suchen."

Dass Kreft und seine Kollegen Recht haben könnten, beweist eine Mikrobe namens "Holophaga foetida". Dieses Bakterium wächst wahrscheinlich in Biofilmen. Holophaga verwertet ringförmige Kohlenstoff-Verbindungen und nutzt dazu einen relativ langen Stoffwechselweg. Derselbe Prozess wird auch von zwei Bakteriengruppen arbeitsteilig durchgeführt. Obwohl diese sich schneller vermehren als Holophaga, sind sie aber seltener. Möglicherweise lässt sich das wegen der schlechteren Futterverwertung erklären.

Reanne Leuning | pressetext.deutschland
Weitere Informationen:
http://www.uni-bonn.de
http://www.ub.es
http://www.trends.com/tim

Weitere Berichte zu: Bakterium Biofilme Enzym Holophaga Nahrung Stoffwechselketten Stoffwechselweg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen