Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eindimensionale Diffusion beschleunigt molekulare Motoren

04.05.2006
Dresdner Max-Planck-Forscher entschlüsseln, auf welche Weise spezielle Motorproteine die Enden von Mikrotubuli identifizieren

Eine neuartige Bewegungsstrategie von Motorproteinen haben Wissenschaftler um Prof. Jonathon Howard und Stefan Diez am Max-Planck-Institut für Molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden identifiziert. Das Protein MCAK (Mitotic Centromere Associated Kinesin) tritt - im Gegensatz zu den meisten anderen Motorproteinen, die zelluläre Lasten über weite Entfernungen entlang der Mikrotubuli transportieren - lediglich an den Enden von Mikrotubuli in Aktion und reguliert deren Länge. Die Forscher konnten nun nachweisen, dass das Protein diese Position durch eine ungerichtete, eindimensionale Diffusionbewegung entlang der Mikrotubuli selbst findet und an deren Ende dann einrastet (Nature, 4. Mai 2006). Diese Erkenntnisse sind wichtig für das detaillierte Verständnis zellulärer Lebensvorgänge wie Zellteilung oder Nervenzellwachstum.


Zeitliche Abfolge (20 Zeitpunkte, von oben nach unten) der Bewegung einzelner MCAK-Moleküle (grün) entlang eines Mikrotubulus (rot). Bild: Max-Planck-Institut für Molekulare Zellbiologie und Genetik

Wenn Zellen sich teilen, bauen sie einen gigantischen Apparat auf, die so genannte Zellteilungsspindel. Diese besteht aus Mikrotubuli, winzigen Protein-Polymeren, die - je nach Bedarf - wie ein Gerüst auf- und abgebaut werden können und gleichsam die Schienen bilden, entlang derer Motorproteine die Chromosomenhälften mit der Erbgutinformation in die entstehenden Tochterzellen ziehen. Bisher noch unklar war die Frage, wie die Länge der Mikrotubuli eigentlich geregelt wird und auf welche Weise die daran beteiligten Proteine überhaupt die Enden der zu regulierenden Mikrotubuli erreichen.

Die Max-Planck-Forscher untersuchten am Beispiel des Proteins MCAK, wie dieses die Enden von Mikrotubuli auffindet. Howard und seine Kollegen fanden die Antwort: "Wir verfolgten einzelne MCAK-Moleküle unter dem Mikroskop und konnten sehen: MCAK dockt nach dem Zufallsprinzip irgendwo an einem Mikrotubulus an und rutscht dann auf dessen Oberfläche hin und her", so der australische Biophysiker.

... mehr zu:
»MCAK »Mikrotubuli »Protein

Diese Zufallsstrategie ist erstaunlich effizient und erfolgreich - auf diese Weise kann MCAK sehr schnell die Mikrotubuli-Enden lokalisieren. Howard weiter: "Wenn es dann dort angekommen ist, frisst es sich wie Pacman, der Computersmiley aus den 1980er-Jahren, in das Ende hinein und lässt nicht wieder los". Die Chromosomenhälften folgen dieser Bewegung und werden so akkurat auf die Tochterzellen verteilt. [JH/SD]

Originalveröffentlichung:

Jonne Helenius, Gary Brouhard, Yannis Kalaidzidis, Stefan Diez & Jonathon Howard:
The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends

Nature, 4 May 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: MCAK Mikrotubuli Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics