Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Wirkungsweise eines Naturgiftes entschlüsselt

13.04.2006


Untersuchung der Struktur eines Toxin-Ionenkanal-Komplexes. Mittels Festkörper-NMR wurde untersucht, welche Wirkung Kaliotoxin, das Gift eines nordafrikanischen Skorpions (Bild links), auf einen bakteriellen Kalium-Kanal hat. Durch Analyse der Festkörper-NMR Daten der spin-markierten Proben vor und nach der Komplexbildung (rot bzw. grün, Bild oben) haben die Forscher ein strukturelles Modell der Bindungstasche entwickelt (Bild unten). Das Toxin beziehungsweise die rot markierten Bereiche des Kanalporteins werden bei der Bindung beeinflusst, die blauen Bereiche nicht. Bild: Max-Planck-Institut für biophysikalische Chemie/ZMNH


Internationales Forscherteam macht erstmals sichtbar, wie Giftstoffe an Kaliumkanäle binden und deren interne Struktur verändern


Bisse und Stiche von Schlangen, Spinnen und Skorpionen sind oft tödlich. Dabei werden im Körper des Opfers Giftstoffe freigesetzt, die dann an Ionenkanäle in der Zellmembran binden. Was genau dabei passiert, haben jetzt Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie zusammen mit deutschen und französischen Kollegen aufgedeckt. Mit einer Kombination aus magnetischer Resonanzspektroskopie (Festkörper-NMR) mit speziellen Protein-Syntheseverfahren konnten sie zeigen, dass sich sowohl die Struktur des Kaliumkanals selbst als auch des Toxins ändert, wenn diese sich zu einem Komplex verbinden. Diese Befunde könnten helfen, wirksamere Medikamente gegen Bluthochdruck und andere Krankheiten zu entwickeln, die mit Fehlfunktionen von Kalium-Kanälen zusammenhängen (Nature, 13. April 2006).

Die Zellen unseres Körpers sind von Membranen umgeben, in die wiederum Ionenkanäle eingebettet sind. Hierbei handelt es sich um spezielle Proteine, die es ganz bestimmten Ionen erlauben, die Zellmembran zu durchqueren. Dadurch baut sich ein elektrochemisches Gefälle auf, so dass Signale von Nerven- oder Herzmuskelzellen weitergeleitet werden können. Wird eine solche Zelle erregt, ändert sich die Struktur ihrer Ionenkanäle: Diese bilden Poren, durch die Ionen passieren können. So gibt es beispielsweise Kalium-Kanäle, also Proteine, die nur für Kalium-Ionen durchlässig sind. Deshalb sind sie Angriffsziel hochspezifische Toxine vieler giftiger Tiere. Diese Toxine interagieren mit den Kalium-Kanälen in den Zellen des Opfers, so dass elektrische Signale nicht mehr weitergeleitet werden, was oft zum Tode führt.


Solche Wechselwirkungen sind auf struktureller Ebene bisher nur unzureichend untersucht, obwohl man mithilfe der Röntgenkristallographie bereits große Fortschritte bei der Erforschung der Ionenkanäle erzielt hat. Deshalb haben sich die Wissenschaftler vom Max-Planck-Institut für biophysikalische Chemie in Göttingen zusammen mit Forschern des Instituts für Neurale Signalverarbeitung in Hamburg und französischen Kollegen der Universität Marseille etwas einfallen lassen: Sie kombinierten neue Methoden der magnetischen Resonanzspektroskopie (Festkörper-NMR) mit bestimmten Protein-Syntheseverfahren und untersuchten am Beispiel des Gifts des nordafrikanischen Skorpions Androctonus mauretanicus mauretanicus, wie bakterielle Kalium-Kanäle mit einem Toxin auf atomarer Ebene in Wechselwirkung treten.

Nach der elektrophysiologischen Charakterisierung des "vergifteten" Kanalproteins stellten die Forscher davon spin-markierte Proteine her und untersuchten diese dann mittels Zweidimensionaler Festkörper-NMR. Die Kohlenstoff- und Stickstoffatome solcher Proteine besitzen ein intrinsisches magnetisches Moment (spin), das der Signalverstärkung im NMR dient. Die Forscher verglichen dann die spektroskopischen Daten vor und nach der Einwirkung des Toxins auf den Kanal. Dabei zeigte sich, dass das Gift an einen ganz bestimmten Bereich des Kanals - die Porenregion - bindet und deren Struktur verändert. Doch auch die NMR-Signale des Toxins hatten sich verändert. Das deutet darauf hin, dass es nur dann wirksam ist, wenn es eine bestimmte Aminosäuresequenz des Ionenkanals erkennt. Auch die intrinsische Flexibilität der Bindungspartner spielt dabei eine wichtige Rolle: Für eine starke Wechselwirkung der Moleküle müssen beide Partner offensichtlich in der Lage sein, ihre Struktur zu verändern.

Die angewandten neuen spektroskopischen Methoden leisten einen wichtigen Beitrag zum Verständnis der Pharmakologie und Physiologie von Kalium-Kanälen und könnten helfen, wirksamere und zugleich spezifischere Medikamente herzustellen.
[MB/AT/LM]

Originalveröffentlichung:

Adam Lange, Karin Giller, Söhnke Hornig, Marie-France Martin-Eauclaire, Olaf Pongs, Stefan Becker, Marc Baldus
Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Festkörper-NMR Ionenkanal Kalium-Kanälen Protein Toxin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen