Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirbel vor der Hochgeschwindigkeitskamera

10.02.2006


Teilchen in der Turbulenz. Die kleinen Perlen in dieser Darstellung visualisieren jedes zweite Bild, aufgenommen von einer Hochgeschwindigkeitskamera, also ein Bild alle 74 Mikrosekunden. Die großen Perlen entsprechen jedem 30. Bild, sie sind also nur 2,2 Millisekunden auseinander. Die Farbe der Kügelchen gibt die Geschwindigkeit der Teilchen wieder - blaue Teilchen sind sehr langsam, während die roten Teilchen sogar Geschwindigkeiten bis zu einem Meter pro Sekunde erreichen. Bild: Max-Planck-Institut für Dynamik und Selbstorganisation


25 Mikrometer große Kugeln aus Polystyrol werden von einer Strömung verwirbelt. Die Teilchen wurden mit einem grünem Laser beleuchtet und der Verschluss der Kamera offen gehalten, so dass die Teilchenbahnen als Streifen sichtbar sind. Das beleuchtete Volumen ist etwa fünf Zentimeter breit. Bild: Max-Planck-Institut für Dynamik und Selbstorganisation


Göttinger Max-Planck-Forscher weisen nach, wie kleinste Teilchen in Turbulenzen auseinander fliegen - und beantworten eine seit Jahrzehnten offene Frage


Turbulenzen treten überall auf: In der Sonne ebenso wie im Milchkaffee, im Verbrennungsmotor wie in der Biologie. Für Naturwissenschaftler und Ingenieure zählen sie zu den seit langem nicht verstandenen Problemen. Nun ist es Forschern des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen und der Cornell University, USA, gemeinsam mit Kollegen des Laboratoire des Écoulements Géophysiques et Industriels des CNRS (UMR) in Grenoble, Frankreich, sowie vom Risø National Laboratory in Roskilde, Dänemark, erstmals gelungen, Jahrzehnte alte theoretische Vorhersagen über die Ausbreitung von Teilchen in starken Turbulenzen einem experimentellen Test zu unterziehen. Mit einem eigens entwickelten System von Hochgeschwindigkeitskameras wiesen sie nach, dass sich die Teilchen anders und langsamer auseinander bewegen als bislang angenommen. Ihre Ergebnisse können dazu dienen, bessere Modelle zum Transport und zur Ausbreitung von Chemikalien oder biologischen Substanzen zu entwickeln (Science, 10. Februar 2006).

Turbulenzen sind allgegenwärtig: Wenn man Milch in den Kaffee gießt und umrührt, strudelt die Milch turbulent durch den Kaffee. In Verbrennungsmotoren oder Gasturbinen mischen sich die Verbrennungsgase effektiver, je turbulenter sie strömen. Und Biologen wollen wissen, wie Tiere Beute oder Partner mit Hilfe von Duftstoffen finden, die von turbulenten Wind- oder Wasserströmungen transportiert werden. Turbulenzen entscheiden auch darüber, wie wahrscheinlich sich chemische Reaktionspartner treffen und miteinander reagieren: So bestimmen sie, wie sich Verschmutzungen oder Gifte in der Atmosphäre oder den Ozeanen ausbreiten und welche Schwankungen sich damit verbinden. Auch bei der Entstehung von Wolken spielen Turbulenzen eine wichtige Rolle, oder in den Modellen zum Ozonabbau in der Atmosphäre.

Turbulenz entsteht, wenn Flüssigkeiten oder Gase schnell bewegt und über größere Strecken getrieben werden. Man erkennt sie erst richtig, wenn "Teilchen" in einer Strömung verwirbelt werden - zum Beispiel, wenn Blätter im Herbstwind tanzen oder wenn Autos auf der nassen Autobahn Nebelfetzen hinter sich lassen. Was dabei genau passiert, wird seit Jahrzehnten erforscht. Eine der ältesten Fragen ist: Wie schnell werden anfänglich nahe beieinander liegende Teilchen von der Turbulenz auseinander getrieben? Der Brite Lewis Fry Richardson sagte in den 1920er-Jahren voraus, dass der mittlere quadratische Abstand zweier Flüssigkeitsteilchen mit der dritten Potenz der Zeit anwachse. Dieses "Richardson-Obukhov-Gesetz" wird vielfach angewandt, um das Mischen der Turbulenz zu beschreiben. Es setzt allerdings voraus, dass die Ausbreitung der Strömung - aufgrund der hohen Komplexität der Turbulenzen - nicht vom Anfangsabstand der Teilchen abhängt.


In der 1950er-Jahren postulierte der Australier George Batchelor in Cambridge daher eine andere Ausbreitungsformel, die im Gegensatz zum Richardson-Obukhov-Gesetz durchaus vom anfänglichen Abstand der Teilchen abhängt. Batchelor behauptete, die Ausbreitung der Strömung wachse quadratisch mit der Zeit an und das Richardson-Obukhov-Gesetz werde erst nach einer von ihm berechneten Zeit wirksam.

Nun ist es einem amerikanisch-deutschen -französischen Forscherteam um Prof. Eberhard Bodenschatz erstmals gelungen, beide Theorien experimentell zu testen. Dazu gaben sie kleinste Teilchen in eine turbulente Wasserströmung (Abbildung 1). Dann maßen sie die Bewegungen der Teilchen mit Hilfe eines Teilchenverfolgungssystems, das aus drei Hochgeschwindigkeitskameras und einem sehr hellen Laser besteht (Abbildung 2, 3). Die Kameras registrierten 25 000 Mal pro Sekunde den Abstand von Teilchen in Abhängigkeit ihres anfänglichen Abstandes. Die Messung entspricht damit in etwa der millionenfachen Messung der Bewegung zweier Schneeflocken in einem Schneesturm, und zwar bei Millisekunden-Auflösung über Minuten hinweg.

Die Forscher fanden beste Übereinstimmung mit der Vorhersage von Batchelor, jedoch keine Übereinstimmung mit dem Richardson-Obukhov-Gesetz. Entgegen der allgemeinen Erwartung scheint das von Batchelor postulierte Gesetz der Bewegung von Teilchen in fast alle turbulenten Strömungen auf Erden zu bestimmen: Der Anfangsabstand der Teilchen scheint für fast alle turbulenten Strömungen auf Erden wichtig zu sein. Die Messungen zeigten auch, dass sich die Teilchen langsamer auseinander bewegen als ursprünglich angenommen.

Die Ergebnisse könnten nun Auswirkungen auf eine Vielzahl von Forschungs- und Anwendungsfeldern haben, vom effektiven Mischen von Stoffen in der Industrie bis zur Modellierung des Inneren von Sternen.

Das Projekt wurde gefördert durch die National Science Foundation, USA, die Cornell University, USA, sowie die Max-Planck-Gesellschaft.

Originalveröffentlichung:

Mickaël Bourgoin, Nicholas T. Ouellette, Haitao Xu, Jacob Berg, Eberhard Bodenschatz
The Role of Pair Dispersion in Turbulent Flow
Science, 10 February 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Hochgeschwindigkeitskamera Strömung Teilchen Turbulenz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise