Das Mammut-Puzzle aus dem Pleistozän – Wissenschaftlerteam entziffert Teile des Erbguts

Die Mammuts sind vor rund 10 000 Jahren von der Erde verschwunden. Die Pflanzenfresser waren im späten Pleistozän, in der Zeit vor 135 000 bis 11 000 Jahren, in weiten Teilen Europas, Asiens, Afrikas und Nordamerikas verbreitet und konnten bis zu drei Meter groß werden – etwa wie heutige Elefanten, die auch ihre nächsten noch lebenden Verwandten sind. Unter günstigen Bedingungen sind von den Mammuts einzelne Knochen oder auch ganze Skelette im Boden erhalten geblieben, das Erbgut in den Zellen ist nach der langen Lagerung über tausende von Jahren aber meistens weitgehend zersetzt.

Dennoch ist es nun einer internationalen Gruppe von Wissenschaftlern gelungen, Teile des Erbguts eines Wollhaarmammuts zu entziffern, dessen Knochen im Dauerfrostboden Sibiriens besonders gut konserviert worden waren. Neben Hendrik N. Poinar von der McMaster University im kanadischen Hamilton und anderen Wissenschaftlern aus den USA, Großbritannien, Frankreich und Russland sind auch der Bioinformatiker Prof. Daniel Huson vom Wilhelm-Schickard-Institut für Informatik der Universität Tübingen und Dr. Stephan Schuster von der PennState University, bis vor kurzem am Max-Planck-Institut für Entwicklungsbiologie in Tübingen, an dem Mammut-Projekt beteiligt. Die Forschungsergebnisse sind online von Sciencexpress veröffentlicht (Sciencexpress, www.sciencexpress.org, 20. Dezember 2005, DOI 10.1126/science.1123360: „Metagenomics to palaeogenomics: Large scale sequencing of Mammoth DNA“)

Für ihre DNA-Analysen haben die Wissenschaftler eine zwei mal fünf Zentimeter große Probe aus einem Kieferknochen eines Wollhaarmammuts entnommen. Das untersuchte Mammut hatte vor mehr als 27 000 Jahren im heutigen Sibirien gelebt. Seine Skelettteile wurden am Taimyr-See nördlich des Polarkreises gefunden. Im Dauerfrostboden sind die Knochen besonders gut erhalten geblieben, da die Zersetzungsprozesse bei niedrigen Temperaturen langsamer als sonst ablaufen. Dennoch haben die Wissenschaftler bei Proben von längst ausgestorbenen Lebewesen mit einigen Schwierigkeiten zu kämpfen: Die DNA hat nicht mehr ihre ursprüngliche langkettige Struktur, sondern ist in Bruchstücke zerfallen, die mühsam wieder richtig aneinander gesetzt werden müssen. Zudem gehören manche DNA-Teile zu einem anderen Puzzle. Denn in das Mammut-Erbgut hat sich möglicherweise im Boden auch DNA von anderen Organismen wie Bakterien und Pilzen hineingemischt. Im Unterschied zu früheren Analysen haben die Wissenschaftler die DNA aus den Zellkernen und nicht die kleinere DNA-Menge aus den Mitochondrien untersucht.

Die isolierte DNA wurde zunächst mit Hilfe eines neuen Verfahrens aufwendig in Lipidbläschen vermehrt und mit einer besonderen Technik analysiert. Die Forscher haben insgesamt 28 Millionen Basenpaare, die Bausteine der DNA, sequenziert. Davon konnten sie 13 Millionen Basenpaare als Mammut-DNA identifizieren. Solche Untersuchungen laufen über Vergleiche der neu analysierten DNA mit im Internet veröffentlichten DNA-Sequenzen anderer Organismen. In Tübingen wurde die neue Software „GenomeTaxonomyBrowser“ erstellt, um den Inhalt einer ungeordneten Menge von DNA-Bruchstücken dem Erbgut der einzelnen Lebewesen zuordnen zu können. Die veröffentlichten Gendaten ganz unterschiedlicher Organismen werden von der zentralen Gendatenbank NCBI gepflegt. Außerdem müssen die Forscher berücksichtigen, dass manche Bestandteile der DNA stabiler sind als andere und ungleiche Veränderungen das Bild verfälschen können.

Die DNA des Wollhaarmammuts (Mammuthus primigenius) wurde mit der von Mensch, Hund und der vom Afrikanischen Elefanten (Loxodonta africana) verglichen. Die identifizierbaren Sequenzen des Wollhaarmammuts stimmten zu 98,55 Prozent mit dem Erbgut des Afrikanischen Elefanten überein. Die Wissenschaftler gehen davon aus, dass Abweichungen der DNA-Sequenzen in diesem Umfang auf einen gemeinsamen Vorfahren der beiden Tiere schließen lassen, der vor fünf bis sechs Millionen Jahren gelebt hat. Sie glauben außerdem, dass es sich beim untersuchten Wollhaarmammut um ein Weibchen handeln dürfte, denn unter seinen Gensequenzen hatten keine Ähnlichkeit mit einem Y-Chromosom, das bei Säugetieren das männliche Geschlecht bestimmt.

Der hohe Anteil an Mammut-DNA in ihrer Probe lässt die Wissenschaftler hoffen, dass in absehbarer Zeit die Entzifferung des kompletten Mammutgenoms möglich wird. Das würde der Paläo-Genforschung ganz neue Möglichkeiten bei der Untersuchung der Evolution auf molekularer Ebene eröffnen. Außerdem könnte das Wissen dabei helfen, den Einfluss von Klimaänderungen auf Lebewesen zu erhellen oder gar eine Antwort darauf geben, warum die Mammuts ausgestorben sind.

Nähere Informationen:

Prof. Daniel Huson
Wilhelm-Schickard-Institut für Informatik
Sand 13
72076 Tübingen
Tel. 0 70 71/2 97 04 50
Fax 0 70 71/29 51 48
E-Mail huson@informatik.uni-tuebingen.de

Media Contact

Michael Seifert idw

Weitere Informationen:

http://www.uni-tuebingen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer