Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kann ein Elektron an zwei Orten gleichzeitig sein?

06.10.2005


In einer Art molekularem Doppelspaltexperiment haben Wissenschaftler des Fritz-Haber-Instituts (FHI) der Max-Planck Gesellschaft in Zusammenarbeit mit Forschern vom California Institute of Technology in Pasadena/USA erstmals an Elektronen nachgewiesen, dass diese gleichzeitig Eigenschaften von Welle und Teilchen besitzen und quasi per Knopfdruck zwischen beiden Zuständen hin- und hergeschaltet. Darüber gelang den Forschern der Nachweis, dass eine Störung der Spiegelsymmetrie dieser Moleküle durch den Einbau zweier verschieden schwerer Isotope, in diesem Fall N14 und N15, zu einem teilweisen Verlust der Kohärenz führt, da sich die Elektronen teilweise an einem der beiden, nun unterscheidbaren Atome, zu lokalisieren beginnen. Diese Untersuchungsergebnisse könnten für den Bau und die Kontrolle von "künstlichen Molekülen", die aus Halbleiter-Quantenpunkten bestehen und als Bauelemente von Quantencomputern in Betracht gezogen werden, von Bedeutung sein (nature, 29. September 2005).



Vor hundert Jahren begann man den in der Naturphilosophie postulierten dualen Charakter der Natur auch auf der Ebene elementarer physikalischer Vorgänge schrittweise zu erkennen. Albert Einstein war der erste, der 1905 diese Konsequenz aus Plancks Quantenhypothese zog. Er ordnete dem eindeutig als elektromagnetische Welle bekannten Photon Teilchencharakter zu. Dies ist die Quintessenz seiner Arbeit zum Photoeffekt. Später war es vor allem deBroglie, der 1926 erkannte, dass alle uns als Teilchen bekannten Bausteine der Natur - Elektronen, Protonen etc. - sich unter bestimmten Bedingungen wie Wellen verhalten.



Die Natur in ihrer Gesamtheit ist also dual; kein einziger ihrer Bestandteile ist nur Teilchen oder Welle. Niels Bohr führte zum Verständnis dieser Tatsache 1923 das Korrespondenz-Prinzip ein, das vereinfacht besagt: Jeder Bestandteil der Natur hat sowohl Teilchen- als auch Wellencharakter und es hängt nur vom Beobachter ab, welchen Charakter er gerade sieht. Anders gesagt: Es hängt vom Experiment ab, welche Eigenschaft - Teilchen oder Welle - man gerade misst. Dieses Prinzip ist als Komplementaritätsprinzip in die Geschichte der Physik eingegangen.

Albert Einstein war diese Abhängigkeit der Natureigenschaften vom Beobachter Zeit seines Lebens suspekt. Er glaubte, es müsse eine vom Beobachter unabhängige Realität geben. Doch die Quantenphysik hat die Tatsache, dass es keine unabhängige Realität zu geben scheint, im Laufe der Jahre einfach als gegeben akzeptiert, ohne sie weiter zu hinterfragen, da alle Experimente sie immer wieder und mit wachsender Genauigkeit bestätigt haben.

Bestes Beispiel ist das Young’sche Doppelspaltexperiment. Bei diesem Doppelspaltexperiment lässt man kohärentes Licht auf eine Blende mit zwei Schlitzen fallen. Auf einem Beobachtungsschirm hinter der Blende zeigt sich dann ein Interferenzmuster aus hellen und dunklen Streifen. Das Experiment kann aber nicht nur mit Licht, sondern auch mit Teilchen wie z. B. Elektronen durchgeführt werden. Schickt man einzelne Elektronen nacheinander durch den offenen Young’schen Doppelspalt, erscheint auf der dahinterstehenden Photoplatte ein streifenförmiges Interferenzmuster, das keinerlei Information über den Weg, den das Elektron genommen hat, enthält. Schließt man jedoch einen der beiden Spalte, so erscheint auf der Photoplatte ein verwaschenes Abbild des jeweils offenen Spaltes, aus dem man den Weg des Elektrons direkt ablesen kann. Eine Kombination aus Streifenmuster und Lagebild ist in diesem Doppelspaltexperiment jedoch nicht möglich, dazu bedarf es eines molekularen Doppelspaltexperiments, das nicht auf der Orts-Impuls-Unschärfe, sondern der Spiegel-Symmetrie beruht.

Nicht umsonst wurde das Experiment in einer Umfrage der englischen physikalischen Gesellschaft in der Zeitschrift Physics World 2002 zum schönsten Experiment aller Zeiten gewählt. Obwohl jedes Elektron einzeln durch einen der beiden Spalte zu laufen scheint, baut sich am Ende ein wellenartiges Interferenzmuster auf, als ob sich das Elektron beim Durchgang durch den Doppelspalt geteilt hätte, um sich danach wieder zu vereinen. Hält man aber einen Spalt zu oder beobachtet man, durch welchen Spalt das Elektron geht, verhält es sich wie ein ganz normales Teilchen, das sich zu einer bestimmten Zeit nur an einem bestimmten Ort aufhält, nicht aber an beiden gleichzeitig. Je nachdem also, wie man das Experiment ausführt, befindet sich das Elektron entweder an Ort A oder an Ort B oder an beiden gleichzeitig.

Das diese Doppeldeutigkeit erklärende Bohrsche Komplementaritäts-Prinzip fordert aber zumindest, dass man nur eine der beiden Erscheinungsformen zu einer gegebenen Zeit in einem gegebenen Experiment beobachten kann - entweder Welle oder Teilchen, aber nicht beides zugleich. Bei aller Doppeldeutigkeit der Quantenphysik bleibt dieser Rest von Eindeutigkeit in jedem Experiment erhalten. Entweder ist ein System in einem Zustand des wellenartigen "Sowohl-als-auch" oder aber des teilchenartigen "Entweder-oder" in Bezug auf seine Lokalisierung. Im Prinzip ist dies eine Folge der Heisenbergschen Unschärferelation, die besagt, dass man immer nur eine Größe eines komplementären Pärchens von Größen (z.B. Ort und Impuls) gleichzeitig beliebig genau bestimmen kann. Die Information über die andere Größe geht dabei umgekehrt proportional verloren.

In jüngster Zeit hat eine Klasse von Experimenten ergeben, dass diese verschiedenen Erscheinungsformen der Materie ineinander überführbar sind, das heißt, man kann von einer Form in die andere schalten und unter bestimmten Bedingungen wieder zurück. Diese Klasse von Experimenten nennt man Quantenmarker und Quantenradierer. Sie haben in den letzten Jahren an Atomen und Photonen und seit jüngstem auch an Elektronen gezeigt, das es ein Nebeneinander von "Sowohl-als-auch" und "Entweder-oder" für alle Formen der Materie gibt, also eine Grauzone der Komplementarität. Es gibt demzufolge experimentell nachweisbare Situationen, in denen die Materie sowohl als Welle aber auch als Teilchen gleichzeitig in Erscheinung tritt.

Derartige Situationen werden mit einer Dualitäts-Relation beschrieben, bei der es sich um ein erweitertes Komplementaritäts-Prinzip der Quantenphysik handelt, das man auch als Koexistenzprinzip bezeichnen könnte. Es besagt, dass sich die normalerweise einander ausschließenden Erscheinungsformen der Materie, wie lokal und nichtlokal, kohärent und nichtkohärent, in einem bestimmten Übergangsbereich gleichzeitig nachweisen lassen, also messtechnisch vorhanden sind. Man spricht von teilweiser Lokalisierung und teilweiser Kohärenz bzw. von teilweiser Sichtbarkeit und teilweiser Unterscheidbarkeit; Größen, die über die Dualitätsrelation miteinander verbunden sind.

Das Komplementaritäts-Prinzip und damit der komplementäre Dualismus der Natur wird in diesem Übergangsbereich also um ein Koexistenzprinzip, d.h. einen parallelen Dualismus erweitert. Dieser zeigt, das die Natur einen ambivalenteren Charakter hat, als bisher angenommen. Beispiele dafür sind die Atom-Interferometrie, wo dieses Verhalten 1997 erstmalig bei Atomen, d.h. zusammengesetzten Teilchen, gefunden wurde.

In der aktuellen Ausgabe von Nature berichten die Berliner Max-Planck-Forscher gemeinsam mit Forschern vom California Institute of Technology in Pasadena/USA nun von molekularen Doppelspaltexperimenten mit Elektronen, also nicht zusammengesetzten elementaren Teilchen. Diese beruhen darauf, dass sich Moleküle mit identischen und damit spiegelsymmetrischen Atomen wie ein von der Natur aufgebauter mikroskopisch kleiner Doppelspalt verhalten. Dazu gehört Stickstoff, wo sich jedes Elektron - auch die hochlokalisierten inneren Elektronen - an beiden Atomen gleichzeitig aufhält. Ionisiert man nun ein solches Molekül etwa mit weicher Röntgenstrahlung, führt diese Eigenschaft zu einer kohärenten, also wellenartig streng gekoppelten Emission eines Elektrons von beiden atomaren Seiten, genauso wie im Doppelspaltexperiment mit Einzelelektronen.

Die Forscher konnten erstmals den kohärenten Charakter der Elektronenemission solcher Moleküle analog zum Doppelspaltexperiment experimentell direkt nachweisen. Dazu haben sie die innersten und damit am stärksten lokalisierten Elektronen von Stickstoff aus dem Molekül mittels weicher Röntgenstrahlung gelöst und ihre Bewegung anschließend in dem Bezugssystem des Moleküls über eine koinzidente Messung mit den ionischen Molekülfragmenten verfolgt. Darüber hinaus gelang den Forschern der lange bezweifelte Nachweis, dass eine Störung der Spiegelsymmetrie dieser Moleküle durch den Einbau zweier verschieden schwerer Isotope, in unserem Fall N14 und N15, zu einem teilweisen Verlust der Kohärenz führt, da sich die Elektronen teilweise an einem der beiden, nun unterscheidbaren Atome, zu lokalisieren beginnen. Dies entspricht einer teilweisen Markierung eines der beiden Spalte in einem Young’schen Doppelspaltexperiment. Man spricht auch von teilweiser "Welcher Weg"-Information, weil die Markierung Aufschluss darüber gibt, welchen Weg das Elektron genommen hat.

Die Experimente wurden von Mitarbeitern der Arbeitsgruppe "Atomphysik" des FHI an den Synchrotronstrahlungslaboren BESSY in Berlin und HASYLAB bei DESY in Hamburg durchgeführt. Die Messungen mittels einer Multi-Detektoranordnung für kombinierten Elektronen- und Ionen-Nachweis fanden hinter so genannten Undulator-Strahlrohren statt, die weiche Röntgenstrahlung mit hoher Intensität und spektraler Auflösung liefern.


Die Arbeitsgruppe aus vier Wissenschaftlern und drei Doktoranden wird neben der Max-Planck-Gesellschaft hauptsächlich vom Bundesministerium für Bildung und Forschung im Rahmen der Förderung ausgewählter Schwerpunkte der naturwissenschaftlichen Grundlagenforschung gefördert.
[BW/AT]

Originalveröffentlichung:

Daniel Rolles, Markus Braune, Slobodan Cvejanoviæ, Oliver Ge ner, Rainer Hentges, Sanja Korica, Burkhard Langer, Toralf Lischke, Georg Prümper, Axel Reinköster, Jens Viefhaus, Björn Zimmermann, Vincent McKoy and Uwe Becker
Isotope-induced partial localization of core electrons in the homonuclear molecule N2
Nature 437, 711-715, 29 September 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Atom Doppelspaltexperiment Elektron Materie Molekül Teilchen Welle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics