Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleiner Unterschied und große Ähnlichkeiten

26.09.2005


Forscher des Max-Planck-Instituts für molekulare Pflanzenphysiologie wenden Methoden zum Vergleich von Inhaltsstoffen auf gentechnisch veränderte Kartoffeln an



Die Zusammensetzung von gentechnisch hergestellten so genannten Fruktan-Kartoffeln und von konventionell gezüchteten Sorten weicht wenig voneinander ab. Die Kartoffelsorten unterscheiden sich nur anhand der bewusst gentechnisch eingebauten neuen Inhaltsstoffe. Zu diesem Ergebnis kommen Wissenschaftler vom Potsdamer Max-Planck-Institut für molekulare Pflanzenphysiologie zusammen mit Kollegen der Universität von Wales in Aberystwyth in einer Studie, die jetzt in den Proceedings of the National Academy of Sciences (PNAS, Online Early Edition, in der Woche vom 19. bis 23. September) veröffentlicht wurde. Dabei bedienten sich die Wissenschaftler eines am Institut entwickelten Verfahrens zum Nachweis von Inhaltsstoffen in Pflanzen.



Die Forscher hatten gentechnisch veränderte Kartoffeln der Sorte Desirée, die stark erhöhte Mengen des Mehrfachzuckers (Polysaccharids) Inulin enthielten, mit fünf konventionellen Kartoffelsorten verglichen. Inulin ist ein Zucker aus der Klasse der Fruktane, also Polysacchariden, die aus Fruktose (Fruchtzucker) zusammengesetzt sind. Die normale Stärke ist dagegen aus Glucose (Traubenzucker) aufgebaut. Die Fruktane werden im Lebensmittel zu den Ballaststoffen gerechnet und wirken sich günstig auf die menschliche Darmflora aus.

Hauptergebnis der Studie: Die Inhaltsstoffe der Sorten Agria, Désirée, Granola, Linda und Solara weichen in einer überraschend großen Schwankungsbreite voneinander ab. Die gentechnisch veränderten Linien, die aus der Sorte Désirée gewonnen wurden, liegen in ihrer Zusammensetzung im gleichen Schwankungsbereich wie die fünf konventionellen Sorten. Ausnahme ist der höhere Gehalt an inulinähnlichen Polysacchariden. Neue, unerwartete Inhaltsstoffe konnten nicht festgestellt werden.

Inulin ist ein Polysaccharid, das in vielen Pflanzen wie Chicorée, Artischocken und Löwenzahn als Vorratsmolekül gebildet wird. Zwei verschiedene Gene für die Bildung von inulinähnlichen Zuckern wurden in die Kartoffeln eingebaut, weil diese Mehrfachzucker eine positive Wirkung auf die menschliche Darmflora haben und daher ein sehr erwünschter Nahrungsbestandteil sind. Die inulinhaltigen Kartoffelsorten wurden bereits im Jahr 2000 am Potsdamer Max-Planck-Institut für molekulare Pflanzenphysiologie entwickelt. Die Eigenschaften der neuen Fruktan-Kartoffeln wurden in den Jahren 2001 bis 2004 im Forschungsverbund Fruktan-Kartoffeln untersucht, der vom Bundesministerium für Bildung und Forschung finanziert wurde (www.biosicherheit.de/kartoffeln).

In der Diskussion über gentechnisch veränderte Lebensmittel wird immer wieder die Befürchtung geäußert, das Pflanzen neben der erwünschten gentechnischen Veränderung auch andere neue, unerwünschte Inhaltsstoffe enthalten könnten. Ein umfassender Vergleich der Inhaltsstoffe zwischen einzelnen Pflanzensorten ist jedoch aufwändig, da hunderte von Substanzen gleichzeitig gemessen werden müssen. Der ehemalige Max-Planck-Arbeitsgruppenleiter Oliver Fiehn, der seit Anfang 2005 an der Universität von Kalifornien in Davis arbeitet, hat seinerzeit in Potsdam raffinierte Techniken entwickelt, die Derartiges leisten. Diese apparativ und statistisch anspruchsvollen Methoden, im Fachjargon als Metabolomics bezeichnet, hat er jetzt zusammen mit Kollegen der Universität Wales auf die genannten Kartoffelsorten angewandt. "Unsere Methoden können natürlich auch auf den Vergleich anderer Nahrungspflanzen übertragen werden", sagt Fiehn.

Die Analysen wurden von der britischen "Food Standards Agency" finanziert. Insgesamt wurden knapp 2.800 Kartoffelproben, die auf Versuchsfeldern der Biologischen Bundesanstalt für Forst- und Landwirtschaft angebaut wurden, untersucht. An der Auswertung war ein Team von Biologen, Chemikern und Informatikern aus Potsdam und Aberystwyth in Wales beteiligt.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie