Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Expeditionen in die Molekül-Architektur: IUB weiht modernste Röntgen-Kristallographietechnik ein

19.09.2005


Am Freitag, den 16. September 2005 weihte die IUB offiziell ihr neues Einkristall-Röntgendiffraktometer ein, das nach der ersten Optimierungsphase jetzt voll einsatzbereit ist. Das Großgerät im Wert von 400 000 Euro ist bisher die einzige Analysemethode, mit der Wissenschaftler die absolute Molekülstruktur von gänzlich unbekannten Substanzen ermitteln können. Ein Kurzsymposion mit Rednern aus dem In- und Ausland führte in die Perspektiven der Einkristall-Röntgendiffraktionstechnik ein und bildete den Rahmen für die Einweihung.



Einsatzgebiet der Einkristall-Röntgendiffraktionstechnik ist vor allem die synthetische organische und anorganische Chemie; es kann aber auch für Fragestellungen aus den Biowissenschaften, der Geochemie oder Medizin verwendet werden. Voraussetzung ist, dass sich von der zu testenden Substanz Kristalle mit regelmäßigem Kristallgitter herstellen lassen, sogenannte Einkristalle. Durch Beschuss dieser Kristalle mit Röntgenstrahlen einer bestimmten Wellenlänge entstehen Streuungsmuster, die mit einem hochempfindlichen Detektor aufgenommen werden. Die computergestützte Analyse der Streuungsmuster erlaubt die absolute Positionsbestimmung einzelner Atome innerhalb eines Moleküls bzw. einer ionischen Substanz und somit die Rekonstruktion der dreidimensionalen Gesamtstruktur.



Berühmtestes Beispiel für die Aufklärung einer Molekülstruktur mittels Röntgendiffraktion ist die Entdeckung der Doppelhelixstruktur des Erbinformationsträgers DNA bereits im Jahr 1953. Seit dem hat sich die Röntgendiffraktionstechnik erheblich weiterentwickelt. Die benötigte Größe der zu vermessenden Kristalle konnte vom Milli- in den Mikrometerbereich verkleinert werden, was insbesondere durch eine gesteigerte Empfindlichkeit der Detektoren erreicht wurde. Darüber hinaus wurde die Messdauer von 1-2 Wochen auf einige Stunden verkürzt. Der Einsatz leistungsfähiger Computer macht sogar 3D-Visualisierung der Moleküle möglich.

Das IUB-Einkristall-Röntgendiffraktometer der Marke Bruker Kappa Apex II ist im norddeutschen Raum das modernste seiner Art. Es wurde von Dr. Ulrich Kortz, IUB Professor of Chemistry, beschafft und bereits im März installiert. Sein Betrieb wurde in den darauffolgenden Monaten durch den IUB-Kristallographen Dr. Michael Dickman optimiert. Bisher konnten bereits rund 150 Kristalle vermessen und die Mehrzahl der Strukturen erfolgreich geklärt werden. Hauptnutzer sind die IUB-Wissenschaftler aus den Bereichen Chemie- und Biowissenschaften. Darüber hinaus wurden im Rahmen von Forschungskooperationen bereits Kristalle aus Italien, Frankreich, Rumänien und Japan gemessen, und Wissenschaftler der Universität Bremen können Messungen im Rahmen der Kooperation zwischen den beiden Universitäten durchführen. Das Gerät wurde auf der Basis des Hochschulbauförderungsgesetzes gemeinsam von der IUB und der Deutschen Forschungsgemeinschaft finanziert.

Aktuelle Perspektiven des Einsatzes der Einkristall-Röntgendiffraktionstechnik entwarfen die Fachvorträge des Einweihungssymposions. Hierbei berichteten die eingeladenen Experten über die Strukturbestimmung verschiedener Verbindungsklassen und diskutierten Potential aber auch die Limits der Einkristall-Röntgendiffraktion als Analysemethode sowie Problemstellungen bei der Datenbearbeitung und -interpretation. Aus Deutschland nahmen Dr. Horst Borrmann vom Max-Planck-Institut Dresden, Dr. Ina Dix, Universität Göttingen, sowie die Professoren Achim Müller und Jürgen Kopf aus Bielefeld und Hamburg teil. Gastredner aus den USA war Prof. Michael T. Pope von der Georgetown University, Washington DC.

Dr. Kristin Beck | idw
Weitere Informationen:
http://www.iu-bremen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics