Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Stop and Go" im Nervensystem

05.07.2005


Zwei-Photonen-Echtzeit-Aufnahmen von grün fluoreszierenden aktivierten T-Zellen in Rückenmarksschnitten. Die Zellen ändern ihre Gestalt und bewegen sich mit hoher Geschwindigkeit durch das Nervengewebe. Die Zahlen in der linken oberen Ecke des Bildes geben den Beobachtungszeitraum in Minuten an. Die Umrisse und gestrichelte Linien bezeichnen die Gestalt, den Ort und die Bewegungsrichtung der Zelle im vorherigen Beobachtungsbild. Bild: Max-Planck-Institut für Neurobiologie


Zwei-Photonen-Echtzeit-Aufnahme von grün fluoreszierenden aktivierten T-Zellen in Rückenmarksschnitten. Die Lymphozyten ändern ihre Gestalt nicht und bleiben im Nervengewebe fest verankert. Die Zahlen in der linken oberen Ecke des Bildes geben die Beobachtungszeit in Minuten an. Die Umrisse und gestrichelte Linien geben die Gestalt, den Ort und die Bewegungsrichtung der Zelle im vorherigen Beobachtungsbild an. Bild: Max-Planck-Institut für Neurobiologie


Max-Planck-Wissenschaftler entdecken, wie autoimmune T-Lymphozyten das Gehirn attackieren


Wissenschaftler des Max-Planck-Instituts für Neurobiologie erforschen Krankheitsmechanismen der Multiplen Sklerose, eine der häufigsten Autoimmunerkrankungen des Menschen. Bei dieser Erkrankung spielt die Invasion autoaggressiver T-Zellen in das Nervensystem eine entscheidende Rolle. Im Tiermodell der Multiplen Sklerose konnten die Neuroimmunologen jetzt das Verhalten dieser autoaggressiven T-Zellen im lebenden Hirngewebe mittels modernster Mikroskopieverfahren live verfolgen und charakterisieren. Die im Journal of Experimental Medicine (Juni 2005) veröffentlichten Ergebnisse sind wesentlich für das Verständnis der Multiplen Sklerose und können die Entwicklung neuer therapeutischer Ansätze fördern.

Die Multiple Sklerose (MS) ist hierzulande die maßgeblichste entzündliche Erkrankung des Zentralnervensystems (ZNS). Sie ist gefürchtet wegen ihrer zahlreichen und vielfältigen neurologischen Ausfälle, wie z.B. Lähmungen, Gefühls- und Gleichgewichtsstörungen. Verursacht werden diese Schäden nach derzeitigem Stand der Forschung durch zahlreiche, im Gehirn und Rückenmark verstreute Entzündungsherde. T-Lymphozyten, die darauf spezialisiert sind, die körpereigene Hirnsubstanz zu attackieren und zu zerstören, machen einen wesentlichen Teil der Entzündungszellen in diesen Herden aus. Allerdings ist nicht geklärt, wie diese autoaggressiven Zellen in das Hirngewebe gelangen. Das Gehirn nimmt nämlich aus immunologischer Sicht eine Sonderstellung ein: T-Zellen, die durch die anderen Körpergewebe streifen, um Eindringlinge aufzuspüren, haben keinen freien Zutritt in das Nervensystem. Die Frage, wie sich autoaggressive T-Zellen Zutritt zum Gehirn verschaffen, ist anhand menschlichen Hirngewebes nicht zu beantworten, wohl aber durch Studien in Tiermodellen.


Die experimentelle autoimmune Enzephalomyelitis (EAE) bietet sich als besonders geeignetes Modell für autoaggressive Hirnentzündungen an, da sie nicht durch von außen eindringende Mikroben ausgelöst wird, sondern von körpereigenen autoimmunen T-Zellen. Die Übertragung dieser Zellen in gesunde Empfängertiere führt zu Entzündungsherden, die denen der Multiplen Sklerose stark ähneln. Die Forscher in Martinsried haben ein Verfahren entwickelt, um krankheitserzeugende autoaggressive T-Zellen durch Genmanipulation so zu verändern, dass sie sichtbar werden - sie fluoreszieren. In ein gesundes Empfängertier übertragen, können sie aufgrund ihrer Eigenfluoreszenz zu jedem Zeitpunkt in jedem Gewebe nachgewiesen werden.

Die ersten Studien dieser fluoreszierenden T-Zellen zeigten, dass autoaggressive T-Zellen keineswegs - wie erwartet - direkt nach ihrer Übertragung in das Hirngewebe eindringen. Tatsächlich wandern sie auf einer komplizierten, streng vorgegebenen Route über mehrere Tage durch die peripheren Immunorgane (Lymphknoten, Milz) und erwerben auf diesem Weg die Fähigkeit, in das Zentrale Nervensystem einzudringen. Erst danach öffnen sich die Schleusen des Gehirns: Innerhalb von Stunden strömen Millionen autoaggressiver T-Zellen aus der Peripherie in das ZNS ein. Zeitgleich mit dieser Flut von Zellen kommt es zum Auftreten schwerer Lähmungen.

Um die Bewegung der autoaggressiven T-Zellen in das Gehirn und innerhalb des Hirngewebes in Echtzeit zu verfolgen, setzten die Martinsrieder Neurobiologen modernste optische Verfahren (Zwei-Photonen-Mikroskopie) ein und stellten dabei fest, dass autoaggressive T-Zellen im Hirngewebe zwei grundlegend verschiedenen Bewegungsmustern folgen: Die Mehrheit der Zellen bewegt sich mit einem für wandernde Zellen enormen Tempo von bis zu 25 Mikrometern pro Minute durch das Gewebe. Dieses Tempo ist um so bemerkenswerter, als das Nervengewebe ein vergleichsweise festes und kompaktes Gewebe darstellt. Die schnell wandernden T-Zellen durchziehen das Nervengewebe offenbar völlig ungerichtet und scheinen keinem Lockstoffgradienten, so genannten Chemokinen, zu folgen. Die Bewegung erfolgt in Wellen, d.h. die Zellen durchlaufen Phasen schneller Bewegungsaktivität, abgelöst von Phasen eines relativen Stillstands.

Eine kleinere Gruppe von T-Zellen scheint jedoch dauerhaft an Ort und Stelle zu verharren. Sie sind an einem Pol der Zellmembran fixiert, um den herum die Zellkörper heftig schwingen (Abb.2). Diese angedockten T-Zellen bilden spezialisierte Verbindungen, die aufgrund ihrer geordneten Struktur analog zu Nervenzellkontakten im Gehirn als immunologische "Synapsen" bezeichnet werden. Diese "Synapsen" befinden sich genau an den Fixpunkten der T-Zellen und bestehen aus dem zentral angeordneten T-Zellrezeptor, umgeben von Ankermolekülen, so genannten "Integrinen". Die Antigen-Erkennung von T-Zellen erfolgt über die Synapsen und manifestiert sich in der Freisetzung von Entzündungsstoffen, so genannten Cytokinen. Die zwei Bewegungsmuster der autoaggressiven T-Zellen im Gehirn legen folgende Interpretationen nahe: Die schnell durch die Hirnsubstanz kreuzenden autoaggressiven T-Zellen sind "auf der Suche" nach Zellen, die ihr passendes Antigen präsentieren. Die angedockten T-Zellen haben dagegen ihr Ziel erreicht und befinden sich im Prozeß der Antigen-Erkennung.

Obwohl es gesichert ist, dass in der autoimmunen Enzephalomyelitis die autoaggressiven T-Zellen für die Schäden im Gehirn verantwortlich sind, sind die Mechanismen, die diese Veränderungen verursachen, weitgehend unklar. "Unsere neugewonnenen Beobachtungen können zur Beantwortung dieser wichtigen Frage beitragen", sagt Alexander Flügel. Sowohl die beweglichen, als auch die angedockten autoaggressiven T-Zellen könnten auf unterschiedliche Weise Schaden anrichten: Die beweglichen Zellen dadurch, dass sie sich durch die Hirnsubstanz bohren, dabei Nervenbahnen und Hirnzellen verdrängen oder gar zerstören. Die arretierten T-Zellen durch ihre Immunsynapsen. Millionen dieser Synapsen bedeuten eine maximale Aktivierung von Millionen T-Zellen und somit eine Flut von Cytokinen im Gehirn. Die Cytokine beeinträchtigen jedoch die Integrität des Nervensystems, da sie das fein regulierte ZNS-Milieu durch Öffnung der schützenden Bluthirnschranke stören und damit die Weiterleitung von Nervenimpulsen blockieren sowie andere potenziell schädigende Immunzellen anlocken.

Auf die Frage, welche therapeutischen Konsequenzen sich aus diesen Befunden ableiten lassen, erklärt Hartmut Wekerle: "Eine Blockade der T-Zellwanderung und der Antigen-Erkennung im Gehirn sollte diese schädigenden Prozesse aufhalten helfen. Somit tragen diese ersten Echtzeit-Filmaufnahmen der Fortbewegung von Immunzellen im zentralen Nervensystem nicht nur zum Verständnis der Krankheitsmechanismen der Multiplen Sklerose und anderer Organ-spezifischer Autoimmunerkrankungen bei, sondern sie eröffnen möglicherweise auch neue therapeutische Ansätze."

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Hirngewebe Nervensystem Sklerose T-Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie