Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grüne Minna für molekulare Übeltäter

07.06.2005


Welch verheerendes Unheil defekte Proteine im Körper anrichten können, zeigen Krankheiten wie Alzheimer oder BSE. Biologen der Universität Bonn haben zusammen mit Medizinern am University College London ein Molekül entdeckt, das gewissermaßen als "Grüne Minna" für molekulare "Übeltäter" fungiert. Mit seiner Hilfe werden die fehlerhaften Proteine schnell entsorgt, ohne dass sie die Zelle schädigen können. In Zellkulturen gelang es der Substanz sogar, Anhäufungen des Proteins Huntingtin aufzulösen. Derartige Huntingtin-Fasern können die tödliche Krankheit Chorea Huntington auslösen, gegen die es bislang kein Heilmittel gibt. Die Ergebnisse sind in der aktuellen Ausgabe des Journals Current Biology erschienen.


Ein krankheitsauslösendes Fragment des Huntingtin-Proteins bildet in einer Nervenzelle ein Aggregat (grün, Pfeil). Das Eskortierungsprotein HSJ1 formt einen Ring um das Proteinaggregat (gelb) und dirigiert nachfolgend einzelne Huntingtin-Moleküle zur Abbaumaschinerie. Die blaue Färbung zeigt den Zellkern. Die rote Färbung weist freies Eskortierungsprotein nach. Foto: Universität Bonn



1951 veröffentlichte der amerikanische Folksänger Woody Guthrie die "alternative Nationalhymne" der USA, "This Land Is Your Land", und wurde damit weltberühmt. 1954 erkrankte er an dem unheilbaren Nervenleiden "Chorea Huntington". 13 Jahre später starb er in einem New Yorker Krankenhaus. Ursache von Chorea Huntington ist ein Gendefekt. Er sorgt dafür, dass in den Nervenzellen die so genannten Huntingtin-Proteine zu langen Fäden verkleben. Werden diese Eiweiß-Fasern zu groß, gehen die Nervenzellen daran zugrunde. Auch bei Alzheimer oder BSE entstehen im Gehirn große Protein-Knäuel, die das Hirngewebe absterben lassen.

... mehr zu:
»Nervenzelle »Protein


Proteine verkleben miteinander, wenn sie aus irgendeinem Grund die falsche Form annehmen. Ähnlich wie bei einem geöffneten Klettverschluss können dann plötzlich "klebrige" Bereiche des Proteins nach außen weisen, die normalerweise in seinem Inneren verborgen sind. Meist ist das kein Drama, weil spezielle Aufpasser-Moleküle die kontaktfreudigen Zelleiweiße entdecken und in die richtige Form "kneten". Sie verhindern so, dass die defekten Proteine "unziemliche" Verbindungen zu anderen Zellbestandteilen eingehen; daher nennt man sie auch "Chaperone" (vom englischen Wort chaperone = Anstandsdame).

"Grüner Punkt" heißt: Ab in den Schredder

Wenn die Proteine nicht zu retten sind, kleben die Chaperone ihnen eine Art "Grünen Punkt" auf. So markiert, wandern die Proteine in der Zelle in einen molekularen Schredder und werden dem Recycling zugeführt. "Diese Markierungs-Funktion der Chaperone kennen wir erst seit wenigen Jahren", erklärt der Bonner Zellbiologe Professor Dr. Jörg Höhfeld. "Und was danach geschieht, war bislang gänzlich unbekannt." Zusammen mit seinen Mitarbeitern hat Höhfeld nun ein Hilfsmolekül entdeckt, das Proteine mit dem "Grünen Punkt" zum Zellschredder schleust. Das HSJ1 (so das wissenschaftliche Akronym) funktioniert wie ein Polizeiwagen mit zwei Sitzplätzen. Auf dem einen nimmt das Chaperon Platz - sozusagen der Polizist -, auf dem anderen das markierte Protein als Übeltäter. Während das Chaperon die klebrigen Stellen des Proteins abschirmt, transportiert das HSJ1 die beiden zum zellulären Schredder. So ist gewährleistet, dass das defekte Zelleiweiß auf der Fahrt kein Unheil anrichten kann.

"HSJ1 kommt fast ausschließlich in Nervenzellen vor, also dort, wo Ansammlungen aus falsch geformten Proteinen große Schäden anrichten können", sagt Professor Höhfeld. In Zellkulturen ist es den Forschern bereits gelungen, Huntingtin-Fasern durch Zugabe der Substanz aufzulösen. Ein großer Erfolg, aber: "Zellkulturen sind keine Menschen", warnt Höhfeld vor hochgesteckten Erwartungen. "Ob sich aus unseren Ergebnissen jemals neue Therapien gegen Hirnkrankheiten ergeben, bleibt abzuwarten."

Kontakt:
Prof. Dr. J. Höhfeld
Institut für Zellbiologie der Uni Bonn
Tel.: 0228/73-53 08
E-Mail: hoehfeld@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Nervenzelle Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops