Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Bewegung von Atomen und Molekülen auf der Spur

22.04.2005


Internationale Wissenschaftlerkollaboration, darunter das Max-Planck-Institut für biophysikalische Chemie, stellt technische Neuerungen zur Visualisierung ultrakurzer Prozesse vor


Einzelschussaufnahmen eines InSb-Röntgenreflexes, oben ungestört, ohne Laseranregung, unten nach Laseranregung. Die gestrichelten Linien deuten die Regionen an, die durch den Laserpuls angeregt wurden. Durch geschickte geometrische Anordnung des Laseranregungspulses zum Röntgen-Abfragepuls ist es möglich, die zeitliche Auflösung des Prozesses durch räumliche Auflösung darzustellen. Bild: Max-Planck-Institut für biophysikalische Chemie



Was bei atomaren und molekularen Prozessen im Zeitraum von wenigen Femtosekunden geschieht, untersucht zurzeit ein internationales Konsortium von 18 Forschungslaboratorien, darunter eine Emmy-Noether-Nachwuchsgruppe vom Max-Planck-Institut für biophysikalische Chemie in Göttingen. Bisher entziehen sich diese sehr schnellen Vorgänge allen Beobachtungsmethoden. Die Wissenschaftler haben dazu nun zwei Arbeiten veröffentlicht. Ihre Studien beschreiben wichtige technische Schritte auf dem Weg zur Verwendung von Licht extrem kurzer Wellenlänge, also von Röntgenstrahlung, aus so genannten freien Elektronenlasern (XFELs) bei der Untersuchung von schnell ablaufenden atomaren Vorgängen. (Phys. Rev. Lett. 94, 2005 und Science 308, 392, 2005).



Freie Elektronenlaser (XFELs) versprechen einen großen Fortschritt in der Lichterzeugung. Die Laser werden langfristig vor allem Licht sehr kurzer Wellenlängen, also Röntgenstrahlung, liefern. Es sollen Pulse mit einer Länge von nur wenigen Femtosekunden entstehen, die sowohl räumlich als auch zeitlich "kohärent" sind, sodass das Licht also "im Gleichtakt marschiert", gleichphasig und damit u.a. ganz besonders intensiv ist. Solche Röntgenpulse würden die Untersuchung der Dynamik von Materie in einer bisher nicht erreichbaren Zeitdimension erlauben. Dabei sollen sie ermöglichen, beispielsweise Umwandlungen von kondensierter Materie auf der Zeitskala atomarer und molekularer Bewegungen, nämlich in Femtosekunden (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde), zu verfolgen.

Um atomare Prozesse, die sich in diesen kurzen Zeitskalen abspielen, auflösen zu können, sind noch zahlreiche technische Entwicklungen und Vorarbeiten notwendig, die die internationale Arbeitsgruppe an Fallstudien sowie Demonstrationsexperimenten zurzeit am Stanford-Linearbeschleuniger in Kalifornien durchführt. Die amerikanische Röntgenquelle SPPS (Subpicosecond X-ray Source) kann Röntgenpulse erzeugen, die kürzer als 100 Femtosekunden sind. Sie ist damit eine Art Prototyp eines Freien Elektronenlasers im harten Röntgenbereich und momentan die Quelle mit der höchsten Qualität für ultrakurze Röntgenpulse. Am SPPS verwendeten die Wissenschaftler erstmalig komprimierte Elektronenpulse, um Femtosekunden-Röntgenpulse im Energiebereich von 8.5 - 9.5 Kiloelektronenvolt zu erzeugen. Über 50 Wissenschaftlerinnen und Wissenschaftler aus sechs Ländern waren an den Vorversuchen beteiligt. Die ersten Resultate veröffentlichten sie jetzt in den Fachjournalen Physical Review Letters und Science.

Die experimentellen und technischen Schwierigkeiten bei der Beobachtung solch kurzer Vorgänge sind vielfältig. Um beispielsweise strukturelle Umwandlungen von Materie während chemischer Reaktionen zu untersuchen, sollte die Reaktion zu einem genau definierten Zeitpunkt gestartet werden. Ein solch genaues Starten einer Reaktion ist am besten mit einem optischen Laserpuls möglich, der selbst nur einige Femtosekunden lang dauert. Die Ankopplung eines solchen Lasers an den Linearbeschleuniger ist bereits technisch möglich und für Pikosekunden-Zeitskalen realisiert. Für kürzere Zeiten allerdings betreten die Wissenschaftler zurzeit technisches Neuland. In der ersten Arbeit zu dieser Problematik konnten sie jetzt zeigen, dass es mithilfe der Methode der so genannten elektro-optischen Abtastung (EO) möglich ist, die zufällige Zeitverschmierung zwischen optischem Laserpuls und Röntgenpuls auf unter 100 Femtosekunden genau zu bestimmen.

In der zweiten Arbeit wurde erstmalig bewiesen, dass es mit der Röntgenquelle SPPS möglich ist, direkt die strukturellen Änderungen eines Phasenüberganges von einem geordneten Festkörper in eine ungeordnete Flüssigkeit zu verfolgen. Beispielhaft untersuchten die Forscher den nicht-thermischen, photo-induzierten Phasenübergang des Halbleiters Indiumantimonid (InSb) vom festen in einen flüssigen Zustand. Bei diesem Prozess verändert sich die Struktur des Halbleiters so, dass er auf einer ultraschnellen Zeitskala scheinbar "flüssig" wird.

Die Untersuchung dieses Prozesses ist von fundamentalem Interesse, da Indiumantimonid auf vielfältige Weise in der Halbleiterelektronik eingesetzt wird. Transformationszeiten für diesen Phasenübergang liegen unter 100 Femtosekunden. Die Ergebnisse deuteten die Forscher so, dass in den ersten hundert Femtosekunden durch die Anregung mit dem optischen Laserpuls die kovalenten Bindungen, also die Bindungen, die durch gemeinsame Elektronenpaare zwischen Atomen eines Moleküls bestehen, im Festkörper gebrochen werden, während sich die Kerne ungestört thermisch weiterbewegen. Dieser Zustand gleicht dann einem Übergang zwischen fester und flüssiger Phase, wobei die Kerne nach dem photo-induzierten Bindungsbruch in der ungeordneten Phase auf einer abgeflachten angeregten Energiefläche relaxieren, ohne dass Prozesse gefunden wurden, die für eine reine flüssige Phase typisch wären. Das Besondere an den veröffentlichten Experimenten ist, dass sie in Einzelschussexperimenten von einzelnen Röntgenpulspaketen aufgenommen wurden. Damit konnte die größtmögliche Zeitauflösung der SPPS-Quelle für diese Experimente ausgenutzt werden. In Kombination mit dem so genannten EO-Experiment, ist es so möglich, mit Röntgenpulsen, die mit Linearbeschleunigern erzeugt wurden, zeitaufgelöste Röntgenexperimente mit hoher räumlicher und zeitlicher Auflösung durchzuführen.

Dr. Simone Techert | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.gwdg.de
http://www.mpg.de

Weitere Berichte zu: Atom Femtosekunde Laserpuls Materie Molekül Phasenübergang Prozess Röntgenpuls SPPS

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie