Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser effizient entkeimen

08.04.2005


Mikroben mit ultravioletter Strahlung zu sterilisieren, ist in vielen Kläranlagen Usus. Wirkungsgrad und Lebensdauer der eingesetzten Strahler bestimmen dabei, wie effizient eine Anlage arbeitet. Der Prototyp einer verbesserten UV-Lichtquelle arbeitet mit Mikrowellen.


Im Ablaufgerinne einer Kläranlage fließt Wasser von links nach rechts und wird in der Mitte flächig mit UV-Licht bestrahlt. © Fraunhofer TEG



Gegen Mikroben hilft UV-Licht. Daher werden Abwässer - zum Beispiel aus Tierkörperbeseitigungsanstalten oder Krankenhäusern - nach der Reinigung in der Kläranlage zusätzlich noch mit UV-Licht bestrahlt. Auch Betreiber kommunaler Kläranlagen setzen zunehmend diese Technik ein - insbesondere dann, wenn sich in der Nähe Badegewässer befinden. Sogar zur Aufbereitung von Trinkwasser und für Schwimmbäder ist dieses Entkeimungsverfahren bewährt und elegant, zumal keine Chemikalien benötigt werden. Ultraviolette Strahlung mit einer Wellenlänge um 254 Nanometer schädigt das Erbgut von Bakterien, Pilzen und Viren derart, dass bei ausreichend hoher Dosis nahezu alle Keime ihre Fähigkeit verlieren, sich zu vermehren. Nachteil der zumeist verwendeten Quecksilberdampflampen: Ihre Leistung fällt allmählich ab und die Lebensdauer liegt im Dauerbetrieb bei unter einem Jahr. Mit Wirkungsgraden von 5 bis 35 Prozent erwärmt das Gros der eingesetzten elektrischen Energie lediglich das Wasser. Ein neues Konzept für einen UV-Lichtstrahler wurde im EU-Projekt "PlasLight" entwickelt. Da der Strahler ohne verschleißende Elektroden auskommt, ist er besonders langlebig. Projektpartner sind Unternehmen und Institute aus vier EU-Ländern - darunter Wissenschaftler vom Fraunhofer-Institut für Chemische Technologie ICT und von der Fraunhofer-Technologie-Entwicklungsgruppe TEG.



Die Funktionsweise der neuen UV-Quelle unterscheidet sich gänzlich von herkömmlichen Lampen: Magnetrons erzeugen Mikrowellenstrahlung, die über Zuleitungen eine Kammer erreichen. In der darin eingeschlossenen Gasmischung entsteht ein Plasma, das dann UV-Licht abstrahlt. Im derzeit am weitesten entwickelten Prototypen geht es durch zwei 40 x 40 Zentimeter große Quarzplatten auf das vorbeiströmende Wasser über. "Wichtig ist die Zusammensetzung des Gases", verrät Projektleiterin Anja Flügge, "denn darüber können wir - im Gegensatz zu herkömmlichen Lampen - die Wellenlänge der emittierten Strahlung in gewissen Grenzen einstellen. Dadurch lässt sich die UV-Quelle auf verschiedene Keimarten anpassen."

Eingebettet ist der Strahler in einen mobilen Versuchsstand, der im Wesentlichen aus einem oben offenen Kanal ("Gerinne") und der UV-Lichtquelle besteht. So lässt sich bei Kunden das jeweilige Wasser unter realen Bedingungen behandeln und untersuchen. Während der IFAT in München präsentieren die Forscher ihre "PlasLight"-Anlage vom 25. bis 29. April. Auf der "Leitmesse für Umwelt und Entsorgung" kann sie in Halle B2 besichtigt werden.

Dr. Johannes Ehrlenspiel | idw
Weitere Informationen:
http://www.fraunhofer.de

Weitere Berichte zu: Kläranlage Strahler Strahlung UV-Licht UV-Quelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau