Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser effizient entkeimen

08.04.2005


Mikroben mit ultravioletter Strahlung zu sterilisieren, ist in vielen Kläranlagen Usus. Wirkungsgrad und Lebensdauer der eingesetzten Strahler bestimmen dabei, wie effizient eine Anlage arbeitet. Der Prototyp einer verbesserten UV-Lichtquelle arbeitet mit Mikrowellen.


Im Ablaufgerinne einer Kläranlage fließt Wasser von links nach rechts und wird in der Mitte flächig mit UV-Licht bestrahlt. © Fraunhofer TEG



Gegen Mikroben hilft UV-Licht. Daher werden Abwässer - zum Beispiel aus Tierkörperbeseitigungsanstalten oder Krankenhäusern - nach der Reinigung in der Kläranlage zusätzlich noch mit UV-Licht bestrahlt. Auch Betreiber kommunaler Kläranlagen setzen zunehmend diese Technik ein - insbesondere dann, wenn sich in der Nähe Badegewässer befinden. Sogar zur Aufbereitung von Trinkwasser und für Schwimmbäder ist dieses Entkeimungsverfahren bewährt und elegant, zumal keine Chemikalien benötigt werden. Ultraviolette Strahlung mit einer Wellenlänge um 254 Nanometer schädigt das Erbgut von Bakterien, Pilzen und Viren derart, dass bei ausreichend hoher Dosis nahezu alle Keime ihre Fähigkeit verlieren, sich zu vermehren. Nachteil der zumeist verwendeten Quecksilberdampflampen: Ihre Leistung fällt allmählich ab und die Lebensdauer liegt im Dauerbetrieb bei unter einem Jahr. Mit Wirkungsgraden von 5 bis 35 Prozent erwärmt das Gros der eingesetzten elektrischen Energie lediglich das Wasser. Ein neues Konzept für einen UV-Lichtstrahler wurde im EU-Projekt "PlasLight" entwickelt. Da der Strahler ohne verschleißende Elektroden auskommt, ist er besonders langlebig. Projektpartner sind Unternehmen und Institute aus vier EU-Ländern - darunter Wissenschaftler vom Fraunhofer-Institut für Chemische Technologie ICT und von der Fraunhofer-Technologie-Entwicklungsgruppe TEG.



Die Funktionsweise der neuen UV-Quelle unterscheidet sich gänzlich von herkömmlichen Lampen: Magnetrons erzeugen Mikrowellenstrahlung, die über Zuleitungen eine Kammer erreichen. In der darin eingeschlossenen Gasmischung entsteht ein Plasma, das dann UV-Licht abstrahlt. Im derzeit am weitesten entwickelten Prototypen geht es durch zwei 40 x 40 Zentimeter große Quarzplatten auf das vorbeiströmende Wasser über. "Wichtig ist die Zusammensetzung des Gases", verrät Projektleiterin Anja Flügge, "denn darüber können wir - im Gegensatz zu herkömmlichen Lampen - die Wellenlänge der emittierten Strahlung in gewissen Grenzen einstellen. Dadurch lässt sich die UV-Quelle auf verschiedene Keimarten anpassen."

Eingebettet ist der Strahler in einen mobilen Versuchsstand, der im Wesentlichen aus einem oben offenen Kanal ("Gerinne") und der UV-Lichtquelle besteht. So lässt sich bei Kunden das jeweilige Wasser unter realen Bedingungen behandeln und untersuchen. Während der IFAT in München präsentieren die Forscher ihre "PlasLight"-Anlage vom 25. bis 29. April. Auf der "Leitmesse für Umwelt und Entsorgung" kann sie in Halle B2 besichtigt werden.

Dr. Johannes Ehrlenspiel | idw
Weitere Informationen:
http://www.fraunhofer.de

Weitere Berichte zu: Kläranlage Strahler Strahlung UV-Licht UV-Quelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics