Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grüne Giganten

04.04.2005


Max-Planck-Wissenschaftler entdecken, wie kleine RNA Moleküle die Biomasse von Pflanzen regulieren


Links eine Wildtyp-Pflanze kurz vor dem Blühen; rechts eine Pflanze, die unter gleichen Bedingungen gewachsen ist. Die rechte Pflanze ist mehr als doppelt so alt, blüht noch immer nicht, hat aber das mehr als dreifache Gewicht der linken Pflanze. Diese Effekte sind auf die Überproduktion der microRNA156 zurückzuführen. Bild: MPI für Entwicklungsbiologie



Kleine RNA-Moleküle, so genannte microRNAs, greifen steuernd in die Protein-Synthese von Organismen ein, indem sie über komplementäre Basenpaarung an die Boten-RNAs der entsprechenden Proteine binden. Wissenschaftler vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen konnten nun den Grad der Sequenz-Spezifität bestimmen, mit dem microRNAs an Boten-RNAs binden müssen, um deren effektiven Abbau zu induzieren. In der Modellpflanze Arabidopsis konnten die Forscher durch Überproduktion bestimmter microRNAS dabei auch eine deutliche Zunahme der Biomasse auslösen, die sich bei Nutzpflanzen unter Umständen vorteilhaft einsetzen ließe (Developmental Cell, 3. April 2005).

... mehr zu:
»Biomasse »Boten-RNA »Organismus »Protein »RNA


Der komplexe Weg von einer befruchteten Eizelle zu einem vielzelligen Organismus erfordert einen hohen Grad an Koordination und Regulation. Vor wenigen Jahren haben Forscher herausgefunden, dass dabei so genannte microRNAs, kleine RNA Moleküle von nur 19 bis 23 Nukleotiden Länge, eine entscheidende Rolle übernehmen. Erstmals entdeckt im Fadenwurm C. elegans als genetische Regulatoren der Larvalstadien, wurden in den letzten Jahren in immer mehr Organismen, Tieren wie auch Pflanzen, ähnliche microRNAs mit verwandten Funktionen gefunden. Die Information für die kleinen RNA-Moleküle ist in der DNA gespeichert. Ebenso wie die Bauanleitung für die Proteine: Hierbei wird der entsprechende DNA-Abschnitt in Boten-RNA umgeschrieben und diese wiederum in einem zweiten Schritt in eine Aminosäurekette, das Protein, übersetzt. In diese Protein-Synthese greifen microRNAs regulierend ein, indem sie über komplementäre Basenpaarung an die Boten-RNAs der entsprechenden Proteine binden. In pflanzlichen Systemen folgt daraufhin der Abbau dieser Boten-RNA, die damit nicht mehr für die Herstellung des Proteins zur Verfügung steht.

Da microRNAs selbst auch nur zu bestimmten Zeiten und in bestimmten Geweben produziert werden, handelt es sich hierbei um eine zusätzliche Regulationsebene, die garantiert, dass Proteine nur in den dafür vorgesehenen Zellen und nur in adäquaten Mengen produziert werden. Fehlregulationen durch ein verändertes Zusammenspiel von RNAs und Proteinen können zu erheblichen Defekten und veränderten Eigenschaften der Pflanze führen. Auch wenn einige grundlegende Fragen zur Entstehung und Funktionsweise der microRNA in Pflanzen schon geklärt werden konnten, so ist doch nach wie vor in vielen Fällen noch immer unbekannt, welche Prozesse von den verschiedenen microRNAs reguliert werden und auch den molekularen Mechanismus zur Erkennung von Boten-RNAs kennt man nur ansatzweise. Rebecca Schwab und ihre Kollegen aus der Arbeitsgruppe von Detlef Weigel am Max-Planck-Institut für Entwicklungsbiologie haben mit molekularbiologischen, genomischen und bioinformatischen Methoden versucht, der Funktion und den Wirkungsmechanismen pflanzlicher microRNAs auf die Spur zu kommen.

Indem die Wissenschaftler eine künstliche Überproduktion der microRNA auslösen, können sie damit gleichzeitig die Synthese der von der microRNA regulierten Proteine weiter drosseln. Dadurch verändert sich das Erscheinungsbild des Organismus, und das wiederum lässt Rückschlüsse auf die Funktion der microRNA in der Entwicklung des Tiers oder der Pflanze zu. In der Modellpflanze Arabidopsis thaliana führte die Überproduktion von microRNAs in allen untersuchten Fällen zu erheblichen Missbildungen und Entwicklungsdefekten. Bei der pflanzenspezifischen microRNA156 konnten die Forscher eine deutliche Zunahme der Biomasse beobachten (Abbildung 1). "Dieses Ergebnis ist besonders interessant", erklärt Detlef Weigel. "Denn der genetische Konservierungsgrad dieser microRNA und der von ihr regulierten Boten-RNAs lassen vermuten, dass eine Zunahme der Biomasse auf diesem Wege auch in anderen Pflanzenarten, wie zum Beispiel Nutzpflanzen, erzielt werden könnte."

Im Verlauf ihrer Untersuchung gelang es den Entwicklungsbiologen, den Grad der Sequenz-Spezifität zu bestimmen, mit dem microRNAs an Boten-RNAs binden müssen, um deren effektiven Abbau zu induzieren. Dafür wurden genomweite Expressionsprofile von microRNA überproduzierenden und normalen Pflanzen erstellt und verglichen. Extraktion und Analyse der Differenzen zwischen diesen Profilen ermöglichten erstmals, das Spektrum der von einer pflanzlichen microRNA regulierten Boten-RNAs abzuschätzen.

"Unsere Ergebnisse zeigen, dass pflanzliche microRNAs einen sehr hohen Grad an Spezifität erfordern, sodass nur wenige Boten-RNAs direkt beeinflusst werden", erklärt Rebecca Schwab. Mit dem Wissen der Sequenz-spezifischen Parameter, die bestimmen ob eine Boten-RNA von einer bestimmten microRNA reguliert werden kann, steht nun die Zukunft offen, um mithilfe artifizieller microRNAs gezielt und spezifisch die Produktion bestimmter Proteine in Pflanzen zu modulieren. [RS/CB]

Originalveröffentlichung:

Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M und Weigel D
Specific effects of microRNAs on the Plant Transcriptome
Developmental Cell, April 3, 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Biomasse Boten-RNA Organismus Protein RNA

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie

Biomarker zeigen Aggressivität des Tumors an

26.07.2017 | Biowissenschaften Chemie