Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundlegender Prozess des Lebens entdeckt

31.03.2005


Der Marburger Biochemiker Roland Lill klärt erstmals auf, warum Mitochondrien "essentiell" für das Überleben von Zellen sind - Neu entdecktes Protein Rli1 spielt zentrale Rolle bei der Übersetzung von Erbinformationen in Proteine



Einen biochemischen Prozess, der schon früh in der Entstehung des Lebens eine wichtige Rolle spielte, hat die Arbeitsgruppe um den Leibniz-Preisträger Professor Dr. Roland Lill, Direktor des Instituts für Zytobiologie der Philipps-Universität Marburg, aufgeklärt. Bereits vor einigen Jahren hatte Lill die schon lange gestellte Frage beantwortet, warum Mitochondrien - die Kraftwerke der Zelle - eine für das Überleben von Zellen unerlässliche, "essentielle" Rolle spielen. Nun berichtete er, welches Protein für diese essentielle Funktion verantwortlich ist, und konnte dessen Aufgabe, nämlich die Produktion von Ribosomen, näher eingrenzen. Ribosomen wiederum spielen eine zentrale Rolle bei der Herstellung von Proteinen aus der Erbsubstanz DNA. Die Ergebnisse seiner Arbeit veröffentlichte Lill nun im Fachjournal der European Molecular Biology Organization (EMBO) unter dem Titel "Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1 and mitochondria" (EMBO Journal (2005) 24, 589-598).



Bereits vor fünf Jahren hatten Lill und Mitarbeiter in Zusammenarbeit mit der ungarischen Gruppe um Professor Dr. Gyula Kispal herausgefunden, dass Mitochondrien für die lebenswichtige Bildung von so genannten Eisen-Schwefel-Zentren verantwortlich sind, die - in Proteine eingebaut - zum Beispiel Elektronen übertragen können. Ein wichtiges Beispiel für die Funktion von Eisen-Schwefel-Proteinen ist die zelluläre Veratmung des Sauerstoffs (O2) zu Wasser (H2O). Entgegen der bis dahin gängigen Lehrmeinung erfolgt die Synthese der Eisen-Schwefel-Proteine nicht spontan, sondern in einem komplexen biochemischen Prozess. Bislang hat Lill mit seinen Mitarbeitern zwölf der bisher zwanzig bekannten, meist mitochondrialen Proteine entdeckt, die für diesen Vorgang wichtig sind. Wird die Bildung der Eisen-Schwefel Proteine unterbunden, so stirbt die Zelle, womit gezeigt ist, dass diese Komponenten eine lebenswichtige Funktion ausüben. So konnte nach vielen Jahrzehnten der Mitochondrienforschung endlich die Frage geklärt werden, welcher Prozess diese Organellen zu essentiellen Bestandteilen einer Zelle macht. Für diese Entdeckung war Lill der Leibniz-Preis 2003 - der höchstdotierte Förderpreis der Deutschen Forschungsgemeinschaft (DFG) - zuerkannt worden. Allerdings war offen geblieben, welches Eisen-Schwefel-Protein es nun genau ist, das den Prozess der Bildung dieser Komponenten in den Mitochondrien essentiell macht und welche Funktion es erfüllt.

In seiner neuen Arbeit berichten Lill und Mitarbeiter nun über die Entdeckung des Proteins Rli1 und seiner Funktion. Bei Untersuchungen am Modellorganismus Hefe fand seine Gruppe in Zusammenarbeit mit der Heidelberger Gruppe um Professor Dr. Ed Hurt heraus, dass Rli1 für die Produktion von Ribosomen zuständig ist. Diese wiederum sind für die "Übersetzung" der genetischen Information in Proteine verantwortlich. "Man kann sich", so Lill, "den Prozess vereinfacht so vorstellen: So genannte Eisen-Schwefel-Zentren werden von einer komplizierten Assemblierungsmaschinerie unter Beteiligung der Mitochondrien gebildet und zur Synthese des Eisen-Schwefel-Proteins Rli1 verwendet. Rli1 hat eine Funktion bei der Bildung von Ribosomen, die wiederum Proteine herstellen. Witzigerweise ergibt dies ein Henne- und Ei-Problem."

"Die Bedeutung dieser Vorgänge für die Evolution ist enorm", sagt Lill. "Sowohl die Ribosomenbiogenese als auch die Herstellung der Eisen-Schwefel-Proteine müssen bei der Entstehung des Lebens bereits sehr früh ’erfunden’ worden sein und sind offensichtlich über Rli1 eng miteinander verknüpft!" Desweiteren müssen Mitochondrien, so der Biochemiker weiter, "spätestens jetzt in einem anderen Licht gesehen werden". Bis heute wurden sie meist nur als Kraftwerke der Zelle betrachtet, da ihre bekannteste biochemische Funktion die Gewinnung von Energie in Form von Adenosintriphosphat (ATP) ist. Doch auch ohne ATP lebt eine Zelle zumindest einige Zeit weiter, wenn sie etwa mit Glukose "gefüttert" wird. "Als viel grundlegender für die Bedeutung der Mitochondrien hat sich nun der in ihnen stattfindende Prozess der Synthese von Eisen-Schwefel-Proteinen herausgestellt", erklärt Lill, "denn dieser ist Voraussetzung dafür, dass Ribosomen entstehen und so die Zelle überhaupt erst in die Lage versetzt wird, ihr genetisches Material auszulesen."

Auch pathologische Störungen bei der Herstellung von Eisen-Schwefel Proteinen sind bekannt. Sie äußern sich beispielsweise in einer neurodegenerativen Krankheit namens Friedreich’s Ataxie, die bei durchschnittlich einem von 50.000 Menschen auftritt und meist zum Tod durch - über eine Kardiomyopathie ausgelöstes - Herzversagen führt. Die Seltenheit dieser Krankheit ist ein Hinweis auf die große Bedeutung der Eisen-Schwefel-Proteinsynthese in Mitochondrien, denn ein solch grundlegender Prozess muss stabil funktionieren, damit er der evolutionären Auslese gewachsen ist.

Kontakt

Professor Dr. Roland Lill: Philipps-Universität Marburg, Institut für Zytobiologie und Zytopathologie, Robert-Koch-Straße 6, 35037 Marburg, Tel.: (06421) 28 66483, E-Mail: lill@staff.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de/cyto

Weitere Berichte zu: Eisen-Schwefel-Protein Mitochondrium Protein Prozess Ribosom Rli1 Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik