Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundlegender Prozess des Lebens entdeckt

31.03.2005


Der Marburger Biochemiker Roland Lill klärt erstmals auf, warum Mitochondrien "essentiell" für das Überleben von Zellen sind - Neu entdecktes Protein Rli1 spielt zentrale Rolle bei der Übersetzung von Erbinformationen in Proteine



Einen biochemischen Prozess, der schon früh in der Entstehung des Lebens eine wichtige Rolle spielte, hat die Arbeitsgruppe um den Leibniz-Preisträger Professor Dr. Roland Lill, Direktor des Instituts für Zytobiologie der Philipps-Universität Marburg, aufgeklärt. Bereits vor einigen Jahren hatte Lill die schon lange gestellte Frage beantwortet, warum Mitochondrien - die Kraftwerke der Zelle - eine für das Überleben von Zellen unerlässliche, "essentielle" Rolle spielen. Nun berichtete er, welches Protein für diese essentielle Funktion verantwortlich ist, und konnte dessen Aufgabe, nämlich die Produktion von Ribosomen, näher eingrenzen. Ribosomen wiederum spielen eine zentrale Rolle bei der Herstellung von Proteinen aus der Erbsubstanz DNA. Die Ergebnisse seiner Arbeit veröffentlichte Lill nun im Fachjournal der European Molecular Biology Organization (EMBO) unter dem Titel "Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1 and mitochondria" (EMBO Journal (2005) 24, 589-598).



Bereits vor fünf Jahren hatten Lill und Mitarbeiter in Zusammenarbeit mit der ungarischen Gruppe um Professor Dr. Gyula Kispal herausgefunden, dass Mitochondrien für die lebenswichtige Bildung von so genannten Eisen-Schwefel-Zentren verantwortlich sind, die - in Proteine eingebaut - zum Beispiel Elektronen übertragen können. Ein wichtiges Beispiel für die Funktion von Eisen-Schwefel-Proteinen ist die zelluläre Veratmung des Sauerstoffs (O2) zu Wasser (H2O). Entgegen der bis dahin gängigen Lehrmeinung erfolgt die Synthese der Eisen-Schwefel-Proteine nicht spontan, sondern in einem komplexen biochemischen Prozess. Bislang hat Lill mit seinen Mitarbeitern zwölf der bisher zwanzig bekannten, meist mitochondrialen Proteine entdeckt, die für diesen Vorgang wichtig sind. Wird die Bildung der Eisen-Schwefel Proteine unterbunden, so stirbt die Zelle, womit gezeigt ist, dass diese Komponenten eine lebenswichtige Funktion ausüben. So konnte nach vielen Jahrzehnten der Mitochondrienforschung endlich die Frage geklärt werden, welcher Prozess diese Organellen zu essentiellen Bestandteilen einer Zelle macht. Für diese Entdeckung war Lill der Leibniz-Preis 2003 - der höchstdotierte Förderpreis der Deutschen Forschungsgemeinschaft (DFG) - zuerkannt worden. Allerdings war offen geblieben, welches Eisen-Schwefel-Protein es nun genau ist, das den Prozess der Bildung dieser Komponenten in den Mitochondrien essentiell macht und welche Funktion es erfüllt.

In seiner neuen Arbeit berichten Lill und Mitarbeiter nun über die Entdeckung des Proteins Rli1 und seiner Funktion. Bei Untersuchungen am Modellorganismus Hefe fand seine Gruppe in Zusammenarbeit mit der Heidelberger Gruppe um Professor Dr. Ed Hurt heraus, dass Rli1 für die Produktion von Ribosomen zuständig ist. Diese wiederum sind für die "Übersetzung" der genetischen Information in Proteine verantwortlich. "Man kann sich", so Lill, "den Prozess vereinfacht so vorstellen: So genannte Eisen-Schwefel-Zentren werden von einer komplizierten Assemblierungsmaschinerie unter Beteiligung der Mitochondrien gebildet und zur Synthese des Eisen-Schwefel-Proteins Rli1 verwendet. Rli1 hat eine Funktion bei der Bildung von Ribosomen, die wiederum Proteine herstellen. Witzigerweise ergibt dies ein Henne- und Ei-Problem."

"Die Bedeutung dieser Vorgänge für die Evolution ist enorm", sagt Lill. "Sowohl die Ribosomenbiogenese als auch die Herstellung der Eisen-Schwefel-Proteine müssen bei der Entstehung des Lebens bereits sehr früh ’erfunden’ worden sein und sind offensichtlich über Rli1 eng miteinander verknüpft!" Desweiteren müssen Mitochondrien, so der Biochemiker weiter, "spätestens jetzt in einem anderen Licht gesehen werden". Bis heute wurden sie meist nur als Kraftwerke der Zelle betrachtet, da ihre bekannteste biochemische Funktion die Gewinnung von Energie in Form von Adenosintriphosphat (ATP) ist. Doch auch ohne ATP lebt eine Zelle zumindest einige Zeit weiter, wenn sie etwa mit Glukose "gefüttert" wird. "Als viel grundlegender für die Bedeutung der Mitochondrien hat sich nun der in ihnen stattfindende Prozess der Synthese von Eisen-Schwefel-Proteinen herausgestellt", erklärt Lill, "denn dieser ist Voraussetzung dafür, dass Ribosomen entstehen und so die Zelle überhaupt erst in die Lage versetzt wird, ihr genetisches Material auszulesen."

Auch pathologische Störungen bei der Herstellung von Eisen-Schwefel Proteinen sind bekannt. Sie äußern sich beispielsweise in einer neurodegenerativen Krankheit namens Friedreich’s Ataxie, die bei durchschnittlich einem von 50.000 Menschen auftritt und meist zum Tod durch - über eine Kardiomyopathie ausgelöstes - Herzversagen führt. Die Seltenheit dieser Krankheit ist ein Hinweis auf die große Bedeutung der Eisen-Schwefel-Proteinsynthese in Mitochondrien, denn ein solch grundlegender Prozess muss stabil funktionieren, damit er der evolutionären Auslese gewachsen ist.

Kontakt

Professor Dr. Roland Lill: Philipps-Universität Marburg, Institut für Zytobiologie und Zytopathologie, Robert-Koch-Straße 6, 35037 Marburg, Tel.: (06421) 28 66483, E-Mail: lill@staff.uni-marburg.de

Thilo Körkel | idw
Weitere Informationen:
http://www.uni-marburg.de/cyto

Weitere Berichte zu: Eisen-Schwefel-Protein Mitochondrium Protein Prozess Ribosom Rli1 Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten