Proteine unter der Lupe

Mit neuen Methoden der Kernresonanzspektroskopie kann die räumliche Struktur von Proteinen bestimmt werden

Proteine, die lebenswichtigen Eiweißbausteine der Organismen, sind lange kettenförmige Moleküle, die sich zu komplizierten dreidimensionalen Gebilden falten. Diese genau festgelegte Struktur ist Voraussetzung dafür, dass ein Protein seine hochspezialisierte Aufgabe im Organismus ausführen kann. Umgekehrt lassen sich Rückschlüsse auf die Funktion eines Proteins ziehen, wenn man seine räumliche Struktur kennt.

Die Strukturaufklärung von Proteinen gestaltet sich schon wegen der Größe der Moleküle äußerst schwierig. Die zuverlässigste Methode ist bisher die Röntgenkristallographie, bei der anhand der Beugung von Röntgenstrahlen an Proteinkristallen die Lagen der Atome im Molekül bestimmt werden. Die dafür benötigten hoch geordneten Kristalle sind häufig nur schwierig zu erhalten. Außerdem liegen viele Proteine in ihrer natürlichen Umgebung in gelöster Form vor. Die Struktur im Kristall kann sich also unter Umständen erheblich von der physiologisch relevanten Struktur des gelösten Proteins unterscheiden.

Ein weiteres Problem stellen Proteine dar, die unter physiologischen Bedingungen zwar feste Aggregate mit teilweise geordneten Bereichen bilden. Diese sind aber nicht regelmäßig genug für eine exakte röntgenkristallographische Analyse. Hier könnte möglicherweise künftig die hochauflösende Festkörper-NMR-Spektroskopie (NMR — Nuclear Magnetic Resonance – magnetische Kernresonanz) zum Einsatz kommen. Bei der Kernresonanzspektroskopie werden die Atomabstände im Molekül anhand ihrer magnetischen Wechselwirkungen berechnet.

Ein Team von Wissenschaftlern um B. Meier aus Zürich hat nun erstmals diese Methode verwendet, um die Struktur eines Prionproteins aus dem Pilz Podospora anserina zu bestimmen. Prionproteine kommen in zwei verschiedenen Formen vor, einer löslichen und einer durch eine Umfaltung der Proteinkette daraus hervorgehenden unlöslichen Amyloidform. Die Festkörper-NMR-Spektren dieser Amyloid-Fasern zeigen, dass etwa zwei Drittel des Proteins eine regelmäßige geordnete Struktur einnehmen, während das restliche Drittel völlig ungeordnet vorliegt. Die geordneten und die ungeordneten Teile können jeweils unterschiedlichen Bereichen des Proteinmmoleküls zugeordnet werden. Zur Zeit sind die Wissenschaftler noch mit der exakten rechnerischen Auswertung der Strukturinformation beschäftigt.

Prionen kommen auch beim Menschen und anderen Säugetieren vor. Die Ablagerung von faserförmigen Amyloidproteinen im Gehirn ist der Auslöser der Prionkrankheiten Scrapie und BSE bei Schaf und Rind oder der Alzheimerschen Demenz und des Creutzfeld-Jakob-Syndroms beim Menschen.

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forschende enthüllen neue Funktion von Onkoproteinen

Forschende der Uni Würzburg haben herausgefunden: Das Onkoprotein MYCN lässt Krebszellen nicht nur stärker wachsen, sondern macht sie auch resistenter gegen Medikamente. Für die Entwicklung neuer Therapien ist das ein…

Mit Kleinsatelliten den Asteroiden Apophis erforschen

In fünf Jahren fliegt ein größerer Asteroid sehr nah an der Erde vorbei – eine einmalige Chance, ihn zu erforschen. An der Uni Würzburg werden Konzepte für eine nationale Kleinsatellitenmission…

Zellskelett-Gene regulieren Vernetzung im Säugerhirn

Marburger Forschungsteam beleuchtet, wie Nervenzellen Netzwerke bilden. Ein Molekülpaar zu trennen, hat Auswirkungen auf das Networking im Hirn: So lässt sich zusammenfassen, was eine Marburger Forschungsgruppe jetzt über die Vernetzung…

Partner & Förderer