Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine unter der Lupe

16.03.2005


Mit neuen Methoden der Kernresonanzspektroskopie kann die räumliche Struktur von Proteinen bestimmt werden



Proteine, die lebenswichtigen Eiweißbausteine der Organismen, sind lange kettenförmige Moleküle, die sich zu komplizierten dreidimensionalen Gebilden falten. Diese genau festgelegte Struktur ist Voraussetzung dafür, dass ein Protein seine hochspezialisierte Aufgabe im Organismus ausführen kann. Umgekehrt lassen sich Rückschlüsse auf die Funktion eines Proteins ziehen, wenn man seine räumliche Struktur kennt.



Die Strukturaufklärung von Proteinen gestaltet sich schon wegen der Größe der Moleküle äußerst schwierig. Die zuverlässigste Methode ist bisher die Röntgenkristallographie, bei der anhand der Beugung von Röntgenstrahlen an Proteinkristallen die Lagen der Atome im Molekül bestimmt werden. Die dafür benötigten hoch geordneten Kristalle sind häufig nur schwierig zu erhalten. Außerdem liegen viele Proteine in ihrer natürlichen Umgebung in gelöster Form vor. Die Struktur im Kristall kann sich also unter Umständen erheblich von der physiologisch relevanten Struktur des gelösten Proteins unterscheiden.

Ein weiteres Problem stellen Proteine dar, die unter physiologischen Bedingungen zwar feste Aggregate mit teilweise geordneten Bereichen bilden. Diese sind aber nicht regelmäßig genug für eine exakte röntgenkristallographische Analyse. Hier könnte möglicherweise künftig die hochauflösende Festkörper-NMR-Spektroskopie (NMR -- Nuclear Magnetic Resonance - magnetische Kernresonanz) zum Einsatz kommen. Bei der Kernresonanzspektroskopie werden die Atomabstände im Molekül anhand ihrer magnetischen Wechselwirkungen berechnet.

Ein Team von Wissenschaftlern um B. Meier aus Zürich hat nun erstmals diese Methode verwendet, um die Struktur eines Prionproteins aus dem Pilz Podospora anserina zu bestimmen. Prionproteine kommen in zwei verschiedenen Formen vor, einer löslichen und einer durch eine Umfaltung der Proteinkette daraus hervorgehenden unlöslichen Amyloidform. Die Festkörper-NMR-Spektren dieser Amyloid-Fasern zeigen, dass etwa zwei Drittel des Proteins eine regelmäßige geordnete Struktur einnehmen, während das restliche Drittel völlig ungeordnet vorliegt. Die geordneten und die ungeordneten Teile können jeweils unterschiedlichen Bereichen des Proteinmmoleküls zugeordnet werden. Zur Zeit sind die Wissenschaftler noch mit der exakten rechnerischen Auswertung der Strukturinformation beschäftigt.

Prionen kommen auch beim Menschen und anderen Säugetieren vor. Die Ablagerung von faserförmigen Amyloidproteinen im Gehirn ist der Auslöser der Prionkrankheiten Scrapie und BSE bei Schaf und Rind oder der Alzheimerschen Demenz und des Creutzfeld-Jakob-Syndroms beim Menschen.

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.de

Weitere Berichte zu: Kernresonanzspektroskopie Lupe Molekül Organismus Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie