Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher klären Arbeitsweise des Spir-Proteins

27.01.2005


Das an der Uni Würzburg entdeckte Spir-Protein bringt die Bildung von Aktinfasern (F-Aktin) in Gang. Es wurde in Säugerzellkulturen hergestellt, seine Lokalisation in der Zelle mit fluoreszierenden Antikörpern sichtbar gemacht (rote Farbe). Das Protein befindet sich in der Nähe des bohnenförmig erscheinenden Zellkerns am so genannten trans-Golgi-Netzwerk (weißer Pfeil). Parallel wurden auch die Aktinfasern angefärbt (blau). Bild: Kerkhoff


Bericht in "Nature": Neuer grundlegender zellbiologischer Mechanismus gefunden


Nach der Entdeckung des Spir-Proteins in der Arbeitsgruppe von Eugen Kerkhoff an der Uni Würzburg ist es nun gelungen, die biochemische Funktion des Proteins aufzuklären. Über diese jüngsten Erkenntnisse berichtet die Top-Zeitschrift "Nature". Die Würzburger Zellforscher haben mit amerikanischen Kollegen herausgefunden, dass das Spir-Protein in der Zelle eine wichtige Arbeit verrichtet: Es vermittelt die Bildung so genannter Aktin-Filamente. Außerdem hegen sie den Verdacht, dass es bei Brustkrebs und beim Wachstum von Nervenzellen eine Rolle spielt.

Das von Kerkhoffs Doktorandin Ines Otto vor fünf Jahren entdeckte Spir-Protein leitet die Polymerisation von Aktin ein. Dieses kugelförmige Protein ist entscheidend an der Zellgestalt und der Zellbewegung beteiligt. Bei der Polymerisation werden einzelne Aktin-Moleküle zu langen Strängen verknüpft - dadurch können Zellen ihre Struktur verändern, sich fortbewegen oder in ihrem Inneren Stoffe transportieren.


Die Polymerisation läuft nicht von alleine ab. Bislang kannte die Wissenschaft zwei Mechanismen, die sie anstoßen, wie Kerkhoff erklärt. Doch nun ist ein dritter Weg aktenkundig, der über das Spir-Protein verläuft. Zuerst bindet das Protein vier einzelne Aktin-Kugeln an sich. Auf diese Weise entsteht ein Keim, an den sich weitere Kugeln anlagern können. Diesen Vorgang der Strangbildung beschreiben die Würzburger Forscher mit ihren Kollegen aus San Francisco und St. Louis detailliert in "Nature".

Spir befindet sich in der Zelle immer in der Nähe von Membran-Bläschen, den so genannten Vesikeln, die dem Materialtransport dienen. "Wir vermuten, dass der vom Spir-Protein aus wachsende Strang den Antrieb für die Bläschen darstellt, dass er sie sozusagen vorwärts schiebt", so Kerkhoff.

Gewissheit dagegen herrscht bei den Forschern darüber, dass Zellen ohne das Spir-Protein ihre Polarität verlieren. Polarität bedeutet, dass Zellen nicht rundum gleich sind, sondern dass es vorne und hinten, unten und oben gibt. Das ist etwa bei den so genannten Epithelzellen der Fall: Sie bedecken Oberflächen, kleiden den Darm oder die Blutgefäße aus. Verlieren solche Zellen ihre Polarität, dann ist das oft der erste Schritt zur Krebsentstehung, wie der Würzburger Forscher sagt.

Denkbar wäre also, dass ein Schaden am Spir-Protein die Polarität einer Zelle aufhebt und diese zur Krebszelle entarten lässt. Interessant in diesem Zusammenhang: Bei 20 Prozent aller Brustkrebspatientinnen werden im Blut Antikörper gefunden, die sich gegen eines der zwei beim Menschen bekannten Spir-Proteine richten. Diesen Zusammenhang zwischen dem Protein und Brustkrebs erforscht Kerkhoff nun in Kooperation mit Ulf R. Rapp und Johannes Dietl von der Frauenklinik der Uni Würzburg. Die Sander-Stiftung (München) fördert das Projekt.

Außerdem widmen sich die Wissenschaftler am Institut für Medizinische Strahlenkunde und Zellforschung einem weiteren Aspekt: "Wir untersuchen auch, welche Rolle Spir bei der Entwicklung der Nervenzellen und im Gehirn spielt", so Kerkhoff. Denn auch hier mischt das Protein offenbar kräftig mit, und auch bei Nervenzellen spielt die Polarität eine große Rolle. Fünf Jahre nach der Entdeckung des Proteins stehen die Würzburger Forscher also noch vor genug Fragen, die einer Antwort harren.

Weitere Informationen:

PD Dr. Eugen Kerkhoff, T (0931) 201-45868, Fax (0931) 201-45835, E-Mail: kerkhoff@mail.uni-wuerzburg.de

Margot E. Quinlan, John Heuser, Eugen Kerkhoff, R. Dyche Mullins: "Drosophila Spir is an actin nucleation factor", Nature Vol. 433, 27. Januar 2005, Seiten 382-388.

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Nervenzelle Polymerisation Protein Spir-Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten