Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher klären Arbeitsweise des Spir-Proteins

27.01.2005


Das an der Uni Würzburg entdeckte Spir-Protein bringt die Bildung von Aktinfasern (F-Aktin) in Gang. Es wurde in Säugerzellkulturen hergestellt, seine Lokalisation in der Zelle mit fluoreszierenden Antikörpern sichtbar gemacht (rote Farbe). Das Protein befindet sich in der Nähe des bohnenförmig erscheinenden Zellkerns am so genannten trans-Golgi-Netzwerk (weißer Pfeil). Parallel wurden auch die Aktinfasern angefärbt (blau). Bild: Kerkhoff


Bericht in "Nature": Neuer grundlegender zellbiologischer Mechanismus gefunden


Nach der Entdeckung des Spir-Proteins in der Arbeitsgruppe von Eugen Kerkhoff an der Uni Würzburg ist es nun gelungen, die biochemische Funktion des Proteins aufzuklären. Über diese jüngsten Erkenntnisse berichtet die Top-Zeitschrift "Nature". Die Würzburger Zellforscher haben mit amerikanischen Kollegen herausgefunden, dass das Spir-Protein in der Zelle eine wichtige Arbeit verrichtet: Es vermittelt die Bildung so genannter Aktin-Filamente. Außerdem hegen sie den Verdacht, dass es bei Brustkrebs und beim Wachstum von Nervenzellen eine Rolle spielt.

Das von Kerkhoffs Doktorandin Ines Otto vor fünf Jahren entdeckte Spir-Protein leitet die Polymerisation von Aktin ein. Dieses kugelförmige Protein ist entscheidend an der Zellgestalt und der Zellbewegung beteiligt. Bei der Polymerisation werden einzelne Aktin-Moleküle zu langen Strängen verknüpft - dadurch können Zellen ihre Struktur verändern, sich fortbewegen oder in ihrem Inneren Stoffe transportieren.


Die Polymerisation läuft nicht von alleine ab. Bislang kannte die Wissenschaft zwei Mechanismen, die sie anstoßen, wie Kerkhoff erklärt. Doch nun ist ein dritter Weg aktenkundig, der über das Spir-Protein verläuft. Zuerst bindet das Protein vier einzelne Aktin-Kugeln an sich. Auf diese Weise entsteht ein Keim, an den sich weitere Kugeln anlagern können. Diesen Vorgang der Strangbildung beschreiben die Würzburger Forscher mit ihren Kollegen aus San Francisco und St. Louis detailliert in "Nature".

Spir befindet sich in der Zelle immer in der Nähe von Membran-Bläschen, den so genannten Vesikeln, die dem Materialtransport dienen. "Wir vermuten, dass der vom Spir-Protein aus wachsende Strang den Antrieb für die Bläschen darstellt, dass er sie sozusagen vorwärts schiebt", so Kerkhoff.

Gewissheit dagegen herrscht bei den Forschern darüber, dass Zellen ohne das Spir-Protein ihre Polarität verlieren. Polarität bedeutet, dass Zellen nicht rundum gleich sind, sondern dass es vorne und hinten, unten und oben gibt. Das ist etwa bei den so genannten Epithelzellen der Fall: Sie bedecken Oberflächen, kleiden den Darm oder die Blutgefäße aus. Verlieren solche Zellen ihre Polarität, dann ist das oft der erste Schritt zur Krebsentstehung, wie der Würzburger Forscher sagt.

Denkbar wäre also, dass ein Schaden am Spir-Protein die Polarität einer Zelle aufhebt und diese zur Krebszelle entarten lässt. Interessant in diesem Zusammenhang: Bei 20 Prozent aller Brustkrebspatientinnen werden im Blut Antikörper gefunden, die sich gegen eines der zwei beim Menschen bekannten Spir-Proteine richten. Diesen Zusammenhang zwischen dem Protein und Brustkrebs erforscht Kerkhoff nun in Kooperation mit Ulf R. Rapp und Johannes Dietl von der Frauenklinik der Uni Würzburg. Die Sander-Stiftung (München) fördert das Projekt.

Außerdem widmen sich die Wissenschaftler am Institut für Medizinische Strahlenkunde und Zellforschung einem weiteren Aspekt: "Wir untersuchen auch, welche Rolle Spir bei der Entwicklung der Nervenzellen und im Gehirn spielt", so Kerkhoff. Denn auch hier mischt das Protein offenbar kräftig mit, und auch bei Nervenzellen spielt die Polarität eine große Rolle. Fünf Jahre nach der Entdeckung des Proteins stehen die Würzburger Forscher also noch vor genug Fragen, die einer Antwort harren.

Weitere Informationen:

PD Dr. Eugen Kerkhoff, T (0931) 201-45868, Fax (0931) 201-45835, E-Mail: kerkhoff@mail.uni-wuerzburg.de

Margot E. Quinlan, John Heuser, Eugen Kerkhoff, R. Dyche Mullins: "Drosophila Spir is an actin nucleation factor", Nature Vol. 433, 27. Januar 2005, Seiten 382-388.

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Nervenzelle Polymerisation Protein Spir-Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie