Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keratin-Knochenersatz aus Neuseeland könnte Knochenheilung revolutionieren

24.01.2005


Forscher der University of Otago haben ein auf Keratin basierendes Hilfsmittel entwickelt, das eine schnellere, bessere und natürliche Knochenheilung unterstützt. Der Keratin-Knochenersatz, entwickelt von Dr. George Dias und Dr. Phil Peplow, könnte bald in der Heilung schwerer Brüche Einsatz finden und bisher verwendete Materialien wie Stahlplatten oder Titanschrauben ersetzen.



Keratin ist ein Protein, das in Haaren, Haut oder Fingernägeln, aber auch in Hörnern, Hufen und der Wolle von Tieren zu finden ist. Es ist widerstandsfähig und vielseitig einsetzbar und wird bereits für die Entwicklung verschiedener medizinischer und anderer Materialien verwendet. Materialien aus Keratin lassen sich in fast jeder Konsistenz erzeugen - von Hydrogel bis zu Substanzen, die fast so hart sind wie Knochen.



Der von Dr. Dias und Dr. Peplow entwickelte Keratin-Knochenersatz hat eine Vielzahl von Vorteilen. Er wird nicht vom Körper abgestoßen und ist komplett biologisch abbaubar, d.h. der Patient behält keine Stahlplatten oder andere Materialien im Körper zurück. Das Material ist darüber hinaus absolut ungiftig und erzeugt keine Reizungen im Körper.

Als Mund-, Kiefer- und Gesichtschirurg hat Dr. Dias in seiner langjährigen Tätigkeit bereits fast alle verfügbaren Materialen wie Edelstahl, Titan oder chemische Polymere verwendet, glaubte aber immer, dass es noch bessere Möglichkeiten der Knochenheilung geben muss. "Eines Tages schaute ich auf meine Fingernägel - die aus Keratin bestehen - und dachte, dass dies das ideale Material für einen Knochenersatz wäre", so Dr. Dias. Er schloss sich mit Dr. Peplow zusammen, um die Einsatzmöglichkeiten von Keratin näher zu ergründen.

"Beim Studium der wissenschaftlichen Literatur stellten wir fest, dass ein entsprechender Einsatz durchaus möglich wäre, dass es aber bisher niemand geschafft hatte, ein Keratinextrakt zu entwerfen, das im Körper eingesetzt werden kann," erläutert Dr. Peplow. In Zusammenarbeit mit Dr. Rob Kelly von der Biotechnologie-Firma Keratec entwickelten sie ein elastisches und bewegliches Material, das aus Schafswolle gewonnen wird. Keratec ist in der Lage, etwa 90 Prozent des Keratins aus Schafswolle zu extrahieren.

Erste Tests des gewonnenen Materials waren sehr vielversprechend. "Ich war von unseren ersten Testergebnissen sehr überrascht, denn es gab nichts, was wir ändern mussten. Es traten keinerlei Reaktionen oder Abstoßungen auf - Vorgänge, die man häufig findet, wenn sich ein fremdes Protein im Körper befindet. Der Körper behandelte das Keratin wie ein Stück eines abgebrochenen Knochens und begann den normalen Regenerationsprozess," so Dias. "Nach einer gewissen Zeit gab es im Körper keinerlei Anzeichen mehr für den Keratin-Knochenersatz, und an seiner Stelle bildete sich neuer Knochen."

Die von den Wissenschaftlern entwickelte und inzwischen patentierte Technologie soll nun in weiteren Schritten von Keratec für die Weiterentwicklung des Keratin-Knochenersatzes und für die Neuentwicklung vielfältiger anderer medizinischer Anwendungsmöglichkeiten genutzt werden.

Weitere Informationen in englischer Sprache:
Liz Rowe, Media Advisor (Acting)
Tel.: 0064-3-479 8263 oder 0064-27-221 5616, Email:
elizabeth.rowe@stonebow.otago.ac.nz

Sabine Ranke-Heinemann | idw
Weitere Informationen:
http://www.ranke-heinemann.de

Weitere Berichte zu: Keratin Keratin-Knochenersatz Knochenheilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie