Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebende Polymere und katalytische Spezialitäten

21.01.2005


Matthias Westerhausen zum Professor für Anorganische Chemie der Universität Jena ernannt



"Lebende Polymere" nennt Prof. Dr. Matthias Westerhausen die langkettigen Verbindungen aus zyklischen Carbonsäureester-Bausteinen, die er im Labor erzeugt. "Die Ketten wachsen so lange, wie Baustoffe zur Verfügung stehen", berichtet der gerade ernannte Lehrstuhlinhaber für Anorganische Chemie an der Friedrich-Schiller-Universität Jena. Die eigentliche Besonderheit der entstehenden Polymere besteht darin, dass sie sich im menschlichen Körper mit der Zeit wieder auflösen und zu ihren unschädlichen Grundbausteinen abgebaut werden. Solche Materialien sind daher in der Medizin sehr gefragt, etwa um komplizierte Knochenbrüche zu verschrauben oder große Brandwunden abzudecken. Die Kunst besteht laut des neuen Chemieprofessors darin, "die Polymerisationsreaktion mit geeigneten katalytisch aktiven Verbindungen überhaupt zu starten. "Da die Polymere im menschlichen Körper zum Einsatz kommen, dürfen bei der Synthese in den aktiven Zentren der Katalysatoren keine toxischen Elemente enthalten sein." Westerhausen hat sich daher u. a. auf organische Verbindungen spezialisiert, die Kalzium enthalten. "Weil es auch in großen Mengen unbedenklich ist", erklärt Westerhausen.

... mehr zu:
»Anorganisch »Chemiker »Labor »Polymer


Neben Polymerisationsstartern erforscht er u. a. elektronenreiche Zinkverbindungen, die beim umweltverträglichen Abbau von Silikonen helfen könnten. Die Siliziumsauerstoffpolymere finden z. B. als Korrosionsschutzschicht in Metalltanks oder als Witterungsschutz auf Denkmälern und Gebäuden Anwendung. Um sie zu beseitigen, müssen sie derzeit verbrannt werden. Westerhausen will neue katalytische Verbindungen designen und erproben, die die Silizium-Sauerstoffbindungen knacken helfen. Anregungen holt sich der 46-jährige Chemiker in der Natur bei den biologischen Katalysatoren (Enzymen). Mit ihrem Sonderforschungsbereich (SFB) "Metallvermittelte Reaktionen nach dem Vorbild der Natur" bietet die Uni Jena reichlich Anknüpfungspunkte für seine Forschung und umgekehrt. Westerhausen ergänzt die Reaktionspalette um katalytische Vorgänge wie die Übertragung von Protonen mittels elektronenreicher Verbindungen.

"Der SFB war einer der Gründe, die mich bestärkt haben nach Jena zu wechseln", erklärt Westerhausen, der vorher Professor an der Ludwig-Maximilians-Universität in München war. "Sowohl was den theoretischen Unterbau meiner Arbeiten betrifft, als auch im Hinblick auf die hier etablierten Messmethoden, finde ich an der Uni Jena ideale Bedingungen vor", freut sich der Chemiker, der mit seiner Frau und seinen zwei Kindern bereits nach Jena umgezogen ist.

Der aus Hannoversch Münden stammende Westerhausen hat an der Universität Marburg Chemie studiert und 1987 an der Universität Stuttgart promoviert. Nach einem einjährigen Postdoc-Aufenthalt an der University of New Mexico in Albuquerque (USA) kehrte er für die Habilitation nach Stuttgart zurück. In der 1994 abgeschlossenen Arbeit beschäftigte er sich mit Transmetallierungsreaktionen als Zugang zu Erdalkalimetall-Hauptgruppenelement-Bindungen. Die so genannten Grignard-Verbindungen finden im Labor und in der chemischen Industrie eine breite Anwendung, haben aber den ökonomischen Nachteil, dass die bei den Reaktionen anfallenden Magnesiumsalze als Sondermüll entsorgt werden müssen. Auch hier arbeitet der Chemiker daran, das Element Magnesium durch das biologisch unbedenkliche Kalzium zu ersetzen. Dies sowie die Forschung an dem Nebengruppenelement Yttrium "sind jedoch reine Grundlagenforschung", macht Westerhausen deutlich.

Kontakt:
Prof. Dr. Matthias Westerhausen
Institut für Anorganische und Analytische Chemie der Universität Jena
Carl-Zeiss-Promenade 10, 07745 Jena
Tel.: 03641 / 948129
E-Mail: m.we@uni-jena.de

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Anorganisch Chemiker Labor Polymer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz