Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebende Polymere und katalytische Spezialitäten

21.01.2005


Matthias Westerhausen zum Professor für Anorganische Chemie der Universität Jena ernannt



"Lebende Polymere" nennt Prof. Dr. Matthias Westerhausen die langkettigen Verbindungen aus zyklischen Carbonsäureester-Bausteinen, die er im Labor erzeugt. "Die Ketten wachsen so lange, wie Baustoffe zur Verfügung stehen", berichtet der gerade ernannte Lehrstuhlinhaber für Anorganische Chemie an der Friedrich-Schiller-Universität Jena. Die eigentliche Besonderheit der entstehenden Polymere besteht darin, dass sie sich im menschlichen Körper mit der Zeit wieder auflösen und zu ihren unschädlichen Grundbausteinen abgebaut werden. Solche Materialien sind daher in der Medizin sehr gefragt, etwa um komplizierte Knochenbrüche zu verschrauben oder große Brandwunden abzudecken. Die Kunst besteht laut des neuen Chemieprofessors darin, "die Polymerisationsreaktion mit geeigneten katalytisch aktiven Verbindungen überhaupt zu starten. "Da die Polymere im menschlichen Körper zum Einsatz kommen, dürfen bei der Synthese in den aktiven Zentren der Katalysatoren keine toxischen Elemente enthalten sein." Westerhausen hat sich daher u. a. auf organische Verbindungen spezialisiert, die Kalzium enthalten. "Weil es auch in großen Mengen unbedenklich ist", erklärt Westerhausen.

... mehr zu:
»Anorganisch »Chemiker »Labor »Polymer


Neben Polymerisationsstartern erforscht er u. a. elektronenreiche Zinkverbindungen, die beim umweltverträglichen Abbau von Silikonen helfen könnten. Die Siliziumsauerstoffpolymere finden z. B. als Korrosionsschutzschicht in Metalltanks oder als Witterungsschutz auf Denkmälern und Gebäuden Anwendung. Um sie zu beseitigen, müssen sie derzeit verbrannt werden. Westerhausen will neue katalytische Verbindungen designen und erproben, die die Silizium-Sauerstoffbindungen knacken helfen. Anregungen holt sich der 46-jährige Chemiker in der Natur bei den biologischen Katalysatoren (Enzymen). Mit ihrem Sonderforschungsbereich (SFB) "Metallvermittelte Reaktionen nach dem Vorbild der Natur" bietet die Uni Jena reichlich Anknüpfungspunkte für seine Forschung und umgekehrt. Westerhausen ergänzt die Reaktionspalette um katalytische Vorgänge wie die Übertragung von Protonen mittels elektronenreicher Verbindungen.

"Der SFB war einer der Gründe, die mich bestärkt haben nach Jena zu wechseln", erklärt Westerhausen, der vorher Professor an der Ludwig-Maximilians-Universität in München war. "Sowohl was den theoretischen Unterbau meiner Arbeiten betrifft, als auch im Hinblick auf die hier etablierten Messmethoden, finde ich an der Uni Jena ideale Bedingungen vor", freut sich der Chemiker, der mit seiner Frau und seinen zwei Kindern bereits nach Jena umgezogen ist.

Der aus Hannoversch Münden stammende Westerhausen hat an der Universität Marburg Chemie studiert und 1987 an der Universität Stuttgart promoviert. Nach einem einjährigen Postdoc-Aufenthalt an der University of New Mexico in Albuquerque (USA) kehrte er für die Habilitation nach Stuttgart zurück. In der 1994 abgeschlossenen Arbeit beschäftigte er sich mit Transmetallierungsreaktionen als Zugang zu Erdalkalimetall-Hauptgruppenelement-Bindungen. Die so genannten Grignard-Verbindungen finden im Labor und in der chemischen Industrie eine breite Anwendung, haben aber den ökonomischen Nachteil, dass die bei den Reaktionen anfallenden Magnesiumsalze als Sondermüll entsorgt werden müssen. Auch hier arbeitet der Chemiker daran, das Element Magnesium durch das biologisch unbedenkliche Kalzium zu ersetzen. Dies sowie die Forschung an dem Nebengruppenelement Yttrium "sind jedoch reine Grundlagenforschung", macht Westerhausen deutlich.

Kontakt:
Prof. Dr. Matthias Westerhausen
Institut für Anorganische und Analytische Chemie der Universität Jena
Carl-Zeiss-Promenade 10, 07745 Jena
Tel.: 03641 / 948129
E-Mail: m.we@uni-jena.de

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Anorganisch Chemiker Labor Polymer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten