Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Juniorprofessorin der Universität Hannover löst Phosphorit-Problem

21.01.2005


Forschungsergebnisse zu Stoffwechsel von Riesenbakterien in der kommenden Ausgabe von Science veröffentlicht


Erst vor etwa fünf Jahren wurden sie entdeckt und beschrieben: die bei weitem größten Bakterien der Welt Thiomargarita namibiensis. Sie sind mit dem bloßen Auge sichtbar und circa ein Drittel bis drei Viertel Millimeter groß. Diese Schwefelbakterien gibt es unter anderem in den Meeresgebieten vor der Küste Namibias. Auf einer der Briefmarken Namibias ist das Bakterium seitdem abgebildet. Nun fand die Entdeckerin Heide N. Schulz, Mikrobiologin und inzwischen Juniorprofessorin an der Universität Hannover, heraus, dass diese faszinierenden Riesenbakterien auch die Lösung für ein altes geowissenschaftliches Problem darstellen. Die Frage, wie in den Sedimenten mancher Küstengewässer reiche Phosphor-Lagerstätten entstanden sind, besonders an den Westküsten der Kontinente, beschäftigt Geowissenschaftler seit langem. Darüber berichtet Heide N. Schulz gemeinsam mit ihrem Koautor und Vater Horst D. Schulz, Geochemiker an der Universität Bremen, in der Ausgabe des Wissenschaftsmagazins Science vom 21. Januar 2005.

Die Bakterien haben einen sehr variantenreichen Stoffwechsel, mit dem sie sich auf die verschiedensten Umweltbedingungen in ihrem komplexen und wechselvollen Lebensraum einstellen. Normalerweise leben sie wie in einer Kläranlage von dem Schwefelwasserstoff, der aus organischen Abfällen entsteht, die auf dem Meeresboden landen. Dabei "atmen" sie entweder Sauerstoff oder Nitrat. Wenn sie aber mit frischem Sediment zugedeckt werden, geht ihnen der Sauerstoff aus. Eine Zeit lang verwenden sie dann noch das in ihrem riesigen Zellvolumen konzentriert gespeicherte Nitrat. Jetzt entdeckten die Science-Autoren, dass die Bakterien noch eine weitere Variante des Stoffwechsels haben. Sie nehmen das im Meerwasser gelöste Phosphat auf, das sie dann später, wenn sie im Sediment eingelagert sind, mit Gewinn an Energie wieder abgeben. Genau diese konzentrierte Abgabe von Phosphat führt dann dazu, dass im Sediment phosphorhaltige Minerale entstehen, die Geowissenschaftler als Phosphorite bezeichnen.


Dieser Prozess ist nicht einfach nachzuweisen, denn die Bakterien betreiben diesen Phosphat-Stoffwechsel nur episodisch und unter ganz bestimmten Bedingungen. Heide N. Schulz war offensichtlich zum richtigen Zeitpunkt an der Küste Namibias. Während einer Expedition mit dem deutschen Forschungsschiff METEOR gelang es ihr, sehr hohe Konzentrationen von gelöstem Phosphat genau da zu messen, wo im Sediment eine Lage der Schwefelbakterien vorhanden war. Genau dort weisen die Sedimente auch extrem hohe Gehalte an Phosphor-Mineralen (fast 30 Prozent) aus der Gruppe der Phosphorite auf. Durch mühevolle Laboruntersuchungen gelang es schließlich zu zeigen, dass die Bakterien auch unter kontrollierten Bedingungen tatsächlich so viel Phosphat freisetzen, wie ein dafür erstelltes Computer-Modell zur Entstehung von Phosphorit-Mineralen errechnet hatte. Damit war das Phosphorit-Problem gelöst.

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Berichte zu: Bakterium Phosphat Phosphorit-Problem Sediment Stoffwechsel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics