Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Pflanzenzelle weiß, wo sie ihre Wurzel bilden muss

12.01.2005


Ein ganzes Protein-Netzwerk regelt die Hormonverteilung - Veröffentlichung in Nature



Wie ein Mensch entwickelt sich auch eine Pflanze aus einer einzigen Zelle. Damit die sich teilt, die Zellen sich strecken, der wachsende Zellklumpen nach oben einen Stängel und Blätter, nach unten aber eine Wurzel bildet, muss das Pflanzenhormon Auxin die Regie übernehmen. Forscher gehen davon aus, dass über die Lenkung der Auxinströme die Pflanze ihre Gestalt annimmt und geregelt wird, in welche Richtung und in welchem Ausmaß sie wächst. Doch wie werden wiederum die Auxinströme gelenkt? Das hat Dr. Jirí Friml vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) an der Universität Tübingen in Zusammenarbeit mit Kollegen an den Universitäten Utrecht und Freiburg bei der Wurzelbildung an der Modellpflanze der Genetiker und Molekularbiologen, der Ackerschmalwand, genauer untersucht. Die Forschungsergebnisse wurden in dem Fachjournal Nature veröffentlicht (Nature, Band 433, Seite 39-44, vom 6. Januar 2005).



Das Hormon Auxin spielt bei so vielen Prozessen der Musterbildung und Wachstumssteuerung in der Ackerschmalwandpflanze, lateinisch Arabidopsis thaliana, eine Rolle, dass seine Verteilung fein reguliert werden muss. Schon in der ersten Zelle einer neuen Pflanze entscheidet die Auxinverteilung, wo "oben" und wo "unten" ist, wo welche Organe angelegt werden. Das Hormon bewegt sich nicht von allein an die richtigen Stellen, sondern es wird über so genannte PIN-Proteine gelenkt. Von den PIN-Proteinen beziehungsweise den PIN-Genen, die ihre Bauanleitungen enthalten, gibt es eine Reihe unterschiedlicher Typen, die von den Wissenschaftlern durchnummeriert wurden. Die PIN-Proteine sitzen in der Zellmembran und ähneln anderen Proteinen, die für Transporte in die Zelle hinein und aus ihr heraus zuständig sind. Die verschiedenen PIN-Proteintypen sind in den Zellen unterschiedlich verteilt: zum Beispiel findet sich PIN1 unten, PIN2 oben und PIN3 seitlich. Sie sorgen dafür, dass das Auxin nur in einer Richtung weitertransportiert wird und sich an bestimmten Stellen konzentriert.

In ihren aktuellen Untersuchungen zur Ausbildung der Wurzel haben die Wissenschaftler ein ganzes Netzwerk an PIN-Proteinen entdeckt, das die Auxinströme lenkt. Fünf verschiedene PIN-Proteine sorgen gemeinsam dafür, dass sich im unteren Wurzelbereich ein Auxinmaximum ausbildet und dadurch die Zellteilung und -streckung während des Auswachsens der Pflanzenwurzel steuern. Außerdem regeln die PIN-Proteine die Aktivität der so genannten PLT-Gene, die für die Bildung von Stammzellen in der Wurzel wichtig sind. Denn in der auswachsenden Wurzel muss sich kontrolliert ein Teil der Zellen spezialisieren, ein anderer Teil, die Stammzellen, muss längerfristig unspezialisiert und teilungsfähig bleiben. Die PLT-Gene wiederum werden gebraucht, um die PIN-Gene ablesen und in Proteine umsetzen zu können. Mit den sich gegenseitig kontrollierenden PIN- und PLT-Genen, die gemeinsam den gerichteten Auxintransport bewerkstelligen und die Musterbildung in der jungen Wurzel bewirken, haben die Forscher ein interaktives Regelungsnetzwerk für diese komplizierten Vorgänge ausgemacht. Damit sind sie der grundlegenden Erforschung der Entwicklung und Gestaltbildung bei Pflanzen, die in vielen Details noch immer rätselhaft ist, wieder einen Schritt näher gekommen.

Nähere Informationen:

Dr. Jirí Friml
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Auf der Morgenstelle 3
72076 Tübingen
Tel. 0 70 71/2 97 88 87
Fax 0 70 71/29 32 87
E-Mail jiri.friml@zmbp.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Auxin Auxinströme PIN-Protein Pflanze Wurzel Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics