Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasterfahndung nach Maja, Willi und Co.

20.06.2001




Ihre Verwandtschaft ist zahlreich - wie zahlreich genau, weiß bis heute niemand: Etwa 20.000 bis 40.000 Bienenarten gibt es weltweit, schätzen Biologen. Dementsprechend schwierig ist es, sie alle auseinander zuhalten. Informatiker und Agrarwissenschaftler der Universität Bonn haben nun ein Computerprogramm entwickelt, das die ökologisch wichtigen Insekten an ihren Flügeln identifiziert. Die Software macht selbst Experten der Bienenbestimmung Konkurrenz.

Eine dicke Hummel hängt betäubt unter der Stereolupe, ihr rechter Flügel eingeklemmt zwischen Glasprisma und Objektträgerglas. Eine helle Lampe beleuchtet die Szenerie von unten, so dass auf dem Display der am Tubus angebrachten Digitalkamera die Flügeläderung deutlich zu erkennen ist. "Zunächst müssen wir den Flügel fotografieren", erklärt Dr. Tom Arbuckle und drückt den Auslöser. "Eine handelsübliche Kamera reicht von der Bildqualität vollständig aus." Er speist die Aufnahme in den nebenstehenden Laptop. Mit wenigen Mausklicken startet der Informatiker, der am Bonner Institut für Informatik III unter der Leitung von Prof. Dr. Armin Cremers arbeitet, dann den ersten Bestimmungsschritt - die Bildverarbeitung.

"In jedem Flügel gibt es drei sehr gut zu erkennende Zellen, an deren Form wir bereits die Gattung erkennen können", verrät Arbuckle. Von diesen Zellen ausgehend, sucht der Computer nach weiteren Adern. Damit er weiß, wo er besonders genau hinschauen muss, greift er dazu auch auf bereits gespeicherte charakteristische Flügelbilder zurück. Aus dem, was die Software findet, destilliert sie dann die wesentlichen Merkmale - sozusagen die Essenz des Hummelflügels, reduziert auf ein paar Zahlen, Flächengrößen und Winkelangaben. "Und mit diesen Werten speisen wir unser Analyse-Programm", erklärt Privatdozent Dr. Volker Steinhage. Drei Minuten nach dem Druck des Auslösers steht fest: Das Versuchstier zählt zur Art Bombus terrestris.


"Selbst in Deutschland mit einer langen Tradition in der Bienenbestimmung sind heute noch Überraschungen möglich." Dr. Stefan Schröder weiß, wovon er spricht: Der Agrarwissenschaftler arbeitete bereits während seiner Diplomarbeit am Institut für Landwirtschaftliche Zoologie und Bienenkunde (Prof. Dr. Dieter Wittmann) mit Hummeln. "Beispielsweise weiß man erst seit kurzem, dass eine bestimmte Hummelart eigentlich aus vier verschiedenen Arten besteht, zwischen denen selbst Experten kaum unterscheiden können." Schröder kam daher die Idee, diese Arbeit vom Computer erledigen zu lassen. Gemeinsam mit Dr. Volker Steinhage vom Bonner Institut für Informatik erarbeitete er das Konzept für ein entsprechendes Programm. Die Umsetzung durch ein Team von Bonner Informatikern und Agrarwissenschaftlern wurde durch die Deutsche Forschungsgemeinschaft (DFG) und das BMBF gefördert. Die Ergebnisse können sich sehen lassen: In 97 bis 99 Prozent der Fälle liegt die Software richtig - besser sind auch Experten der Bienenbestimmung - fachsprachlich Taxonomen - nicht. Die Erdhummel, die sich inzwischen erholt hat, zeigt sich davon unbeeindruckt: Sie putzt sich ausgiebig und fliegt davon.

"Das ist einer der Vorteile unseres Verfahrens", erklärt Schröder. Während bei einer herkömmlichen Bestimmung das Insekt sein Leben lässt, wird es bei der neuen Methode betäubt, indem es kurz auf Eis gelegt wird. Außerdem kann die Bestimmung bereits im Freiland erfolgen und nicht erst nach dem Fang im Labor. "Es ist aber auch möglich, tagsüber im Feld die Flügel zu fotografieren und die Bestimmung vom Computer über Nacht durchführen zu lassen." Ganz ohne menschliche Taxonomen geht es aber nicht: Für die Trainingsphase braucht der Rechner nämlich etwa dreißig einwandfrei bestimmte Tiere ein und derselben Art.

Bienenbestimmung ist kein Selbstzweck: Die Hautflügler bestäuben etwa drei Viertel aller Pflanzen und legen damit die Grundlage für ihre Vermehrung. Umweltverschmutzung und Krankheiten haben aber bereits viele Bienenarten an den Rand des Aussterbens gebracht - mit entsetzlichen Folgen auch für die Landwirtschaft, da weltweit Ernteausfälle in Milliardenhöhe drohen. In den USA werden bereits heute ganze Plantagen von künstlich gezüchteten Bienenvölkern bestäubt. Die Bienenforscher möchten daher die Verbreitung der Arten feststellen - auch um herauszufinden, welche Einflüsse genau den Bestand fördern oder gefährden.

Doch Taxonomen sind rar gesät, denn weltweit mangelt ihnen an Nachwuchs - vor allem, weil mit Bestimmungskenntnissen kein Geld zu verdienen ist. "Die meisten deutschen Bienen-Kenner sind von Hause aus Lehrer, Pastoren oder Apotheker. Die machen das als Hobby", verrät Schröder. Und echte Spezialisten gibt es für viele Bienengruppen deutschlandweit nur einen oder zwei. "Wenn das so bleibt, sterben unsere Taxonomen eher aus als unsere Bienen."

Weitere Informationen: Dr. Stefan Schröder, Institut für Landwirtschaftliche Zoologie und Bienenkunde, Tel.: 0228/9101917, E-Mail: ult404@uni-bonn.de, oder Dr. Volker Steinhage, Institut für Informatik III, Tel.: 0228/73-4538, Fax: 0228/73-4382, E-Mail: steinhag@informatik.uni-bonn.de, oder Prof. Dr. Armin Cremers, Tel.: 0228/73-4500, E-Mail: abc@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.verwaltung.uni-bonn.de/presse/Bildgalerie/bienen/bienen.htm

Weitere Berichte zu: Bestimmung Bienenbestimmung Insekt Taxonomen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics