Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Aus-Schalter für Proteine helfen bei der Aufklärung ihrer Funktion

29.07.2004


Rund 30.000 Gene umfasst das Erbgut des Menschen; jedes von ihnen enthält die Bauanleitung für mindestens ein Protein. Erst von einem Bruchteil dieser Eiweißmoleküle weiß man bisher, welche Funktion sie im Körper erfüllen. Eine elegante und schnelle Methode könnte nun Licht ins Dunkel bringen: Wissenschaftler der Universität Bonn konnten beobachten, dass sich mit Hilfe so genannter Aptamere selbst sehr ähnliche Proteine ganz spezifisch "ausschalten" lassen. In ihrer Veröffentlichung im US-amerikanischen Wissenschaftsmagazin "Proceedings of the National Academy of Science" (Ausgabe 101 vom 27. Juli 2004) weisen sie so für ein Immunprotein nach, dass es bei der Aktivierung bestimmter Gene eine bedeutende Rolle spielt.



Um herauszufinden, wozu ein Eiweißstoff gut ist, schaut man am besten, was der Körper ohne ihn anfängt. Weltweit suchen die Forscher daher nach möglichst simplen Methoden, um einzelne Proteine einfach "auszuschalten". So gibt es inzwischen viel versprechende Werkzeuge, die verhindern, dass die Zelle bestimmte Proteine überhaupt produziert. "Wir gehen einen anderen Weg", erklärt der Bonner Biochemiker Professor Dr. Michael Famulok: "Wir suchen nach Molekülen, den Aptameren, die sich ganz spezifisch an die gewünschten Proteine heften und dadurch verhindern, dass sie funktionieren."

... mehr zu:
»Aptamer »Cytohesin-1 »Cytohesin-2 »Protein


Aptamere sind Ketten aus Ribonukleinsäure (RNA) - das ist sozusagen die "kleine Schwester" der Erbsubstanz DNA. RNA besteht aus vier Bausteinen, den Basen, die beliebig hintereinander gehängt werden können. So lassen sich unendlich viele verschiedene Ketten erzeugen. Diese Ketten "verknäuelen" sich je nach Basenfolge auf eine ganz charakteristische Weise und nehmen so eine bestimmte dreidimensionale Struktur an. Manche RNA-Aptamere sind so geformt, dass sie an bestimmte Proteine binden können und dann ihre Funktion beeinflussen. Bleibt nur noch, diese RNA-Ketten zu finden.

Nadel im Kornfeld

Die Aufgabe ähnelt der Suche nach der sprichwörtlichen Nadel im Heuhaufen - nur war es in diesem Fall eher ein ganzes Kornfeld: Aus 1014 verschiedenen RNA-Ketten bestand die Ausgangs-Mischung, 15.000mal soviel wie Menschen auf der Erde. In diesem Pool suchten die Forscher nach einem Aptamer, dass das Zellprotein Cytohesin-2 hemmt, ohne an das extrem ähnliche Cytohesin-1 zu binden. Die Methode, nach der sie vorgingen, ist elegant und schnell: "Wir befestigten das Cytohesin-2 an einer Trägersubstanz und kippten unsere RNA-Mischung darauf", erklärt Professor Famulok. "Die möglichen Kandidaten banden an das Cytohesin-2; was danach noch frei in der Lösung schwamm, war für uns uninteressant." Danach lösten die Forscher die RNA-Ketten vom Cytohesin-2 und gaben sie zum Cytohesin-1. Jetzt interessierten sie sich aber nur für die Aptamere, die sich nicht an das Cytohesin-1 geheftet hatten. Diese beiden Aufreinigungsschritte wiederholten sie so oft, bis sie ein Aptamer gefunden hatten, dass zwischen den beiden Proteinvarianten eindeutig unterscheiden konnte.

Klebrige Killer

Cytohesine sind wichtige Proteine in den weißen Blutkörperchen, den Zellen, mit denen der Körper Krankheitserreger attackiert. Auf einen molekularen Hilferuf hin - beispielsweise bei einer bakteriellen Infektion - sorgen die Cytohesine dafür, dass bestimmte Proteine in der Hülle der weißen Blutkörperchen plötzlich "klebrig" werden. Damit heften sich die Killerzellen dann an die Blutgefäß-Wand und wandern hindurch in das betroffene Gewebe. So kann das Immunsystem schnell seine Truppen am Ort des Scharmützels versammeln.

"Wir konnten nun durch spezifische Hemmung von Cytohesin-2 zeigen, dass dieses Protein zumindest in unseren Zellkulturen noch eine ganz andere Funktion wahrnimmt", erklärt Famuloks Kollege Professor Dr. Waldemar Kolanus. Der Bonner Biochemiker hat die Gruppe der Cytohesine vor einigen Jahren während seiner Zeit am Gen-Zentrum München entdeckt. "Cytohesin-2 scheint auch eine Reihe von Genen im Zellkern anschalten zu können, während Cytohesin-1 in den hier untersuchten Zellen diese Funktion nicht hat." Das ist insofern bemerkenswert, als die beiden Proteine zu 90 Prozent identisch sind.

Die Ergebnisse zeigen, dass Aptamere auch zwischen extrem ähnlichen Eiweißmolekülen unterscheiden und sie spezifisch hemmen können. Damit sind sie beispielsweise hervorragend geeignet, um die unterschiedlichen Funktionen der verschiedenen Mitglieder einer Proteinfamilie aufzuklären. Professor Famulok: "Für Proteinforscher sind Aptamere extrem nützlich - und überdies vergleichsweise einfach in der Handhabung."

Ansprechpartner:
Professor Dr. Michael Famulok
Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
Telefon: 0228/73-5661
E-Mail: m.famulok@uni-bonn.de

Professor Dr. Waldemar Kolanus
Institut für Molekulare Physiologie und Entwicklungsbiologie der Universität Bonn
Telefon: 0228/73-2073
E-Mail: wkolanus@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.pnas.org/cgi/reprint/0402901101v1.pdf

Weitere Berichte zu: Aptamer Cytohesin-1 Cytohesin-2 Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Neues Unterwasser-Observatorium bei Boknis Eck
19.01.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie

Kieler Forscher koordiniert millionenschweres Verbundprojekt in der Entzündungsforschung

19.01.2017 | Förderungen Preise

Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen

19.01.2017 | Biowissenschaften Chemie