Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Aus-Schalter für Proteine helfen bei der Aufklärung ihrer Funktion

29.07.2004


Rund 30.000 Gene umfasst das Erbgut des Menschen; jedes von ihnen enthält die Bauanleitung für mindestens ein Protein. Erst von einem Bruchteil dieser Eiweißmoleküle weiß man bisher, welche Funktion sie im Körper erfüllen. Eine elegante und schnelle Methode könnte nun Licht ins Dunkel bringen: Wissenschaftler der Universität Bonn konnten beobachten, dass sich mit Hilfe so genannter Aptamere selbst sehr ähnliche Proteine ganz spezifisch "ausschalten" lassen. In ihrer Veröffentlichung im US-amerikanischen Wissenschaftsmagazin "Proceedings of the National Academy of Science" (Ausgabe 101 vom 27. Juli 2004) weisen sie so für ein Immunprotein nach, dass es bei der Aktivierung bestimmter Gene eine bedeutende Rolle spielt.



Um herauszufinden, wozu ein Eiweißstoff gut ist, schaut man am besten, was der Körper ohne ihn anfängt. Weltweit suchen die Forscher daher nach möglichst simplen Methoden, um einzelne Proteine einfach "auszuschalten". So gibt es inzwischen viel versprechende Werkzeuge, die verhindern, dass die Zelle bestimmte Proteine überhaupt produziert. "Wir gehen einen anderen Weg", erklärt der Bonner Biochemiker Professor Dr. Michael Famulok: "Wir suchen nach Molekülen, den Aptameren, die sich ganz spezifisch an die gewünschten Proteine heften und dadurch verhindern, dass sie funktionieren."

... mehr zu:
»Aptamer »Cytohesin-1 »Cytohesin-2 »Protein


Aptamere sind Ketten aus Ribonukleinsäure (RNA) - das ist sozusagen die "kleine Schwester" der Erbsubstanz DNA. RNA besteht aus vier Bausteinen, den Basen, die beliebig hintereinander gehängt werden können. So lassen sich unendlich viele verschiedene Ketten erzeugen. Diese Ketten "verknäuelen" sich je nach Basenfolge auf eine ganz charakteristische Weise und nehmen so eine bestimmte dreidimensionale Struktur an. Manche RNA-Aptamere sind so geformt, dass sie an bestimmte Proteine binden können und dann ihre Funktion beeinflussen. Bleibt nur noch, diese RNA-Ketten zu finden.

Nadel im Kornfeld

Die Aufgabe ähnelt der Suche nach der sprichwörtlichen Nadel im Heuhaufen - nur war es in diesem Fall eher ein ganzes Kornfeld: Aus 1014 verschiedenen RNA-Ketten bestand die Ausgangs-Mischung, 15.000mal soviel wie Menschen auf der Erde. In diesem Pool suchten die Forscher nach einem Aptamer, dass das Zellprotein Cytohesin-2 hemmt, ohne an das extrem ähnliche Cytohesin-1 zu binden. Die Methode, nach der sie vorgingen, ist elegant und schnell: "Wir befestigten das Cytohesin-2 an einer Trägersubstanz und kippten unsere RNA-Mischung darauf", erklärt Professor Famulok. "Die möglichen Kandidaten banden an das Cytohesin-2; was danach noch frei in der Lösung schwamm, war für uns uninteressant." Danach lösten die Forscher die RNA-Ketten vom Cytohesin-2 und gaben sie zum Cytohesin-1. Jetzt interessierten sie sich aber nur für die Aptamere, die sich nicht an das Cytohesin-1 geheftet hatten. Diese beiden Aufreinigungsschritte wiederholten sie so oft, bis sie ein Aptamer gefunden hatten, dass zwischen den beiden Proteinvarianten eindeutig unterscheiden konnte.

Klebrige Killer

Cytohesine sind wichtige Proteine in den weißen Blutkörperchen, den Zellen, mit denen der Körper Krankheitserreger attackiert. Auf einen molekularen Hilferuf hin - beispielsweise bei einer bakteriellen Infektion - sorgen die Cytohesine dafür, dass bestimmte Proteine in der Hülle der weißen Blutkörperchen plötzlich "klebrig" werden. Damit heften sich die Killerzellen dann an die Blutgefäß-Wand und wandern hindurch in das betroffene Gewebe. So kann das Immunsystem schnell seine Truppen am Ort des Scharmützels versammeln.

"Wir konnten nun durch spezifische Hemmung von Cytohesin-2 zeigen, dass dieses Protein zumindest in unseren Zellkulturen noch eine ganz andere Funktion wahrnimmt", erklärt Famuloks Kollege Professor Dr. Waldemar Kolanus. Der Bonner Biochemiker hat die Gruppe der Cytohesine vor einigen Jahren während seiner Zeit am Gen-Zentrum München entdeckt. "Cytohesin-2 scheint auch eine Reihe von Genen im Zellkern anschalten zu können, während Cytohesin-1 in den hier untersuchten Zellen diese Funktion nicht hat." Das ist insofern bemerkenswert, als die beiden Proteine zu 90 Prozent identisch sind.

Die Ergebnisse zeigen, dass Aptamere auch zwischen extrem ähnlichen Eiweißmolekülen unterscheiden und sie spezifisch hemmen können. Damit sind sie beispielsweise hervorragend geeignet, um die unterschiedlichen Funktionen der verschiedenen Mitglieder einer Proteinfamilie aufzuklären. Professor Famulok: "Für Proteinforscher sind Aptamere extrem nützlich - und überdies vergleichsweise einfach in der Handhabung."

Ansprechpartner:
Professor Dr. Michael Famulok
Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
Telefon: 0228/73-5661
E-Mail: m.famulok@uni-bonn.de

Professor Dr. Waldemar Kolanus
Institut für Molekulare Physiologie und Entwicklungsbiologie der Universität Bonn
Telefon: 0228/73-2073
E-Mail: wkolanus@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.pnas.org/cgi/reprint/0402901101v1.pdf

Weitere Berichte zu: Aptamer Cytohesin-1 Cytohesin-2 Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie