Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Aus-Schalter für Proteine helfen bei der Aufklärung ihrer Funktion

29.07.2004


Rund 30.000 Gene umfasst das Erbgut des Menschen; jedes von ihnen enthält die Bauanleitung für mindestens ein Protein. Erst von einem Bruchteil dieser Eiweißmoleküle weiß man bisher, welche Funktion sie im Körper erfüllen. Eine elegante und schnelle Methode könnte nun Licht ins Dunkel bringen: Wissenschaftler der Universität Bonn konnten beobachten, dass sich mit Hilfe so genannter Aptamere selbst sehr ähnliche Proteine ganz spezifisch "ausschalten" lassen. In ihrer Veröffentlichung im US-amerikanischen Wissenschaftsmagazin "Proceedings of the National Academy of Science" (Ausgabe 101 vom 27. Juli 2004) weisen sie so für ein Immunprotein nach, dass es bei der Aktivierung bestimmter Gene eine bedeutende Rolle spielt.



Um herauszufinden, wozu ein Eiweißstoff gut ist, schaut man am besten, was der Körper ohne ihn anfängt. Weltweit suchen die Forscher daher nach möglichst simplen Methoden, um einzelne Proteine einfach "auszuschalten". So gibt es inzwischen viel versprechende Werkzeuge, die verhindern, dass die Zelle bestimmte Proteine überhaupt produziert. "Wir gehen einen anderen Weg", erklärt der Bonner Biochemiker Professor Dr. Michael Famulok: "Wir suchen nach Molekülen, den Aptameren, die sich ganz spezifisch an die gewünschten Proteine heften und dadurch verhindern, dass sie funktionieren."

... mehr zu:
»Aptamer »Cytohesin-1 »Cytohesin-2 »Protein


Aptamere sind Ketten aus Ribonukleinsäure (RNA) - das ist sozusagen die "kleine Schwester" der Erbsubstanz DNA. RNA besteht aus vier Bausteinen, den Basen, die beliebig hintereinander gehängt werden können. So lassen sich unendlich viele verschiedene Ketten erzeugen. Diese Ketten "verknäuelen" sich je nach Basenfolge auf eine ganz charakteristische Weise und nehmen so eine bestimmte dreidimensionale Struktur an. Manche RNA-Aptamere sind so geformt, dass sie an bestimmte Proteine binden können und dann ihre Funktion beeinflussen. Bleibt nur noch, diese RNA-Ketten zu finden.

Nadel im Kornfeld

Die Aufgabe ähnelt der Suche nach der sprichwörtlichen Nadel im Heuhaufen - nur war es in diesem Fall eher ein ganzes Kornfeld: Aus 1014 verschiedenen RNA-Ketten bestand die Ausgangs-Mischung, 15.000mal soviel wie Menschen auf der Erde. In diesem Pool suchten die Forscher nach einem Aptamer, dass das Zellprotein Cytohesin-2 hemmt, ohne an das extrem ähnliche Cytohesin-1 zu binden. Die Methode, nach der sie vorgingen, ist elegant und schnell: "Wir befestigten das Cytohesin-2 an einer Trägersubstanz und kippten unsere RNA-Mischung darauf", erklärt Professor Famulok. "Die möglichen Kandidaten banden an das Cytohesin-2; was danach noch frei in der Lösung schwamm, war für uns uninteressant." Danach lösten die Forscher die RNA-Ketten vom Cytohesin-2 und gaben sie zum Cytohesin-1. Jetzt interessierten sie sich aber nur für die Aptamere, die sich nicht an das Cytohesin-1 geheftet hatten. Diese beiden Aufreinigungsschritte wiederholten sie so oft, bis sie ein Aptamer gefunden hatten, dass zwischen den beiden Proteinvarianten eindeutig unterscheiden konnte.

Klebrige Killer

Cytohesine sind wichtige Proteine in den weißen Blutkörperchen, den Zellen, mit denen der Körper Krankheitserreger attackiert. Auf einen molekularen Hilferuf hin - beispielsweise bei einer bakteriellen Infektion - sorgen die Cytohesine dafür, dass bestimmte Proteine in der Hülle der weißen Blutkörperchen plötzlich "klebrig" werden. Damit heften sich die Killerzellen dann an die Blutgefäß-Wand und wandern hindurch in das betroffene Gewebe. So kann das Immunsystem schnell seine Truppen am Ort des Scharmützels versammeln.

"Wir konnten nun durch spezifische Hemmung von Cytohesin-2 zeigen, dass dieses Protein zumindest in unseren Zellkulturen noch eine ganz andere Funktion wahrnimmt", erklärt Famuloks Kollege Professor Dr. Waldemar Kolanus. Der Bonner Biochemiker hat die Gruppe der Cytohesine vor einigen Jahren während seiner Zeit am Gen-Zentrum München entdeckt. "Cytohesin-2 scheint auch eine Reihe von Genen im Zellkern anschalten zu können, während Cytohesin-1 in den hier untersuchten Zellen diese Funktion nicht hat." Das ist insofern bemerkenswert, als die beiden Proteine zu 90 Prozent identisch sind.

Die Ergebnisse zeigen, dass Aptamere auch zwischen extrem ähnlichen Eiweißmolekülen unterscheiden und sie spezifisch hemmen können. Damit sind sie beispielsweise hervorragend geeignet, um die unterschiedlichen Funktionen der verschiedenen Mitglieder einer Proteinfamilie aufzuklären. Professor Famulok: "Für Proteinforscher sind Aptamere extrem nützlich - und überdies vergleichsweise einfach in der Handhabung."

Ansprechpartner:
Professor Dr. Michael Famulok
Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn
Telefon: 0228/73-5661
E-Mail: m.famulok@uni-bonn.de

Professor Dr. Waldemar Kolanus
Institut für Molekulare Physiologie und Entwicklungsbiologie der Universität Bonn
Telefon: 0228/73-2073
E-Mail: wkolanus@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.pnas.org/cgi/reprint/0402901101v1.pdf

Weitere Berichte zu: Aptamer Cytohesin-1 Cytohesin-2 Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise