Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnerwechsel wie am Fließband - Enzymdomäne verknüpft Prozesse im Zellkern

08.07.2004


Die RNA-Polymerase II ist eines der größten Enzyme im Zellkern und von entscheidender Bedeutung für alle biochemischen Prozesse. Sie fertigt in höheren Organismen Abschriften von Gensequenzen an, die dann aus dem Zellkern in die Zellflüssigkeit transportiert werden, wo deren Umsetzung in Proteine erfolgt. C-terminale Domäne, kurz CTD, heißt eine wichtige Region der RNA-Polymerase, die den Vorgang des Ablesens der DNA, die Transkription, und der Weiterverarbeitung des dabei entstehenden Produkts verknüpft. Zahlreiche Proteine binden an diese Region und verändern sie chemisch. Wie eine derartige Interaktion aussieht, konnten Professor Patrick Cramer und sein Mitarbeiter Dr. Anton Meinhart vom Genzentrum der LMU jetzt in der aktuellen Ausgabe der Fachzeitschrift Nature zeigen. "Der wichtigste Punkt dabei ist, dass der rätselhafteste und interessanteste Teil der RNA-Polymerase etwas demystifiziert wird und wir einen möglichen Code erahnen, der der Kommunikation zwischen Proteinen im Zellkern zu Grunde liegt", meint Cramer.



Die größte der zwölf Untereinheiten der RNA-Polymerase II hat eine Endregion, deren Wichtigkeit schon lange bekannt ist: CTD, die C-terminale Domäne, ist vor allem lang und repetitiv. 26 Mal wiederholt sich in Hefe eine Reihe aus sieben bestimmten Aminosäuren, also Protein-Bausteinen. Bis zu 52 Wiederholungen dieser Sequenz wurden in Säugern gefunden. Wie bereits gezeigt wurde, erfüllt CTD wichtige Funktionen an der Schnittstelle zweier essentieller Prozesse: der Abschrift der DNA in eine erste Version der so genannten mRNA und deren weitere Verarbeitung. Ohne eine funktionierende C-terminale Domäne geht es nicht: Fehlt auch nur die Hälfte der Gesamtsequenz, kann die Hefezelle nicht überleben.



"Diese Domäne ist eine schwanzartige Fortsetzung der RNA-Polymerase, die als Andockstelle für viele andere Proteine dient und so die molekularen Ereignisse im Zellkern koppelt und integriert", berichtet Cramer. "Das funktioniert in etwa wie bei den Fließbändern in der Autoproduktion: Auch bei der RNA-Synthese geht alles Hand in Hand, und wenig oder nichts ist dem Zufall überlassen." Bei Fehlern in der Produktion von mRNAs kann es zu gravierenden Störungen kommen. Deshalb ist dieser für die Zelle so kritische Vorgang streng kontrolliert. Das bei der Transkription entstehende Produkt ist aber noch nicht die fertige mRNA. Zahlreiche Modifikationen an dem fadenförmigen Molekül sind dazu nötig.

Die C-terminale Domäne der RNA-Polymerase vermittelt die Verknüpfung von Transkription und Prozessierung der dabei entstehenden RNA. CTD liegt nahe der Stelle der RNA-Polymerase, wo die RNA austritt. All jene Proteine binden an die Region, die aus diesem Molekül eine fertige mRNA machen. Und zwar Schritt für Schritt: Zu Beginn der Transkription wird CTD chemisch modifiziert. Dadurch können Proteine binden, die am Anfang der RNA Veränderungen vornehmen. Im Verlauf der Transkription kommt es zu anderen Modifikationen der CTD, so dass weitere RNA-prozessierende Proteine binden können. Die Modifikationen der CTD werden erst rückgängig gemacht, wenn die betreffende DNA-Sequenz vollständig abgeschrieben ist, und die fertige mRNA vorliegt. Dann lösen sich alle Proteine von der CTD. Die RNA-Polymerase kann einen neuen Zyklus und eine neue Abschrift beginnen.

Zahlreiche RNA-prozessierende Proteine erkennen CTD mit Hilfe einer ihnen allen gemeinsamen Domäne. Diese Domäne ist bei verschiedenen Faktoren strukturell sehr ähnlich, wie Meinhart und Cramer zeigen konnten. Acht Helices schaffen eine zentrale Furche, an die ein Abschnitt der C-terminalen Domäne binden kann. Die an der CTD vorgenommenen Modifikationen verändern ihre dynamische Struktur so, dass nur die jeweils im zeitlichen Ablauf gewünschten Proteine binden können. "CTD ist also so etwas wie eine veränderbare Plattform für die Ansammlung vieler beteiligter Aktivitäten", berichtet Cramer. Ohne Modifikationen scheint CTD zu einer sehr kompakten Spirale zu schrumpfen, an die kein Protein mehr binden kann, die aber zu Beginn der Transkription in den RNA-Polymerase-Komplex integriert wird. (suwe)

Ansprechpartner:

Prof. Dr. Patrick Cramer
Genzentrum, Department für Chemie und Biochemie
Te.: 089/2180-76953, Fax: -76999
E-Mail: cramer@LMB.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.LMB.uni-muenchen.de/cramer

Weitere Berichte zu: C-terminale CTD Domäne Modifikationen Protein RNA-Polymerase Transkription Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics