Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partnerwechsel wie am Fließband - Enzymdomäne verknüpft Prozesse im Zellkern

08.07.2004


Die RNA-Polymerase II ist eines der größten Enzyme im Zellkern und von entscheidender Bedeutung für alle biochemischen Prozesse. Sie fertigt in höheren Organismen Abschriften von Gensequenzen an, die dann aus dem Zellkern in die Zellflüssigkeit transportiert werden, wo deren Umsetzung in Proteine erfolgt. C-terminale Domäne, kurz CTD, heißt eine wichtige Region der RNA-Polymerase, die den Vorgang des Ablesens der DNA, die Transkription, und der Weiterverarbeitung des dabei entstehenden Produkts verknüpft. Zahlreiche Proteine binden an diese Region und verändern sie chemisch. Wie eine derartige Interaktion aussieht, konnten Professor Patrick Cramer und sein Mitarbeiter Dr. Anton Meinhart vom Genzentrum der LMU jetzt in der aktuellen Ausgabe der Fachzeitschrift Nature zeigen. "Der wichtigste Punkt dabei ist, dass der rätselhafteste und interessanteste Teil der RNA-Polymerase etwas demystifiziert wird und wir einen möglichen Code erahnen, der der Kommunikation zwischen Proteinen im Zellkern zu Grunde liegt", meint Cramer.



Die größte der zwölf Untereinheiten der RNA-Polymerase II hat eine Endregion, deren Wichtigkeit schon lange bekannt ist: CTD, die C-terminale Domäne, ist vor allem lang und repetitiv. 26 Mal wiederholt sich in Hefe eine Reihe aus sieben bestimmten Aminosäuren, also Protein-Bausteinen. Bis zu 52 Wiederholungen dieser Sequenz wurden in Säugern gefunden. Wie bereits gezeigt wurde, erfüllt CTD wichtige Funktionen an der Schnittstelle zweier essentieller Prozesse: der Abschrift der DNA in eine erste Version der so genannten mRNA und deren weitere Verarbeitung. Ohne eine funktionierende C-terminale Domäne geht es nicht: Fehlt auch nur die Hälfte der Gesamtsequenz, kann die Hefezelle nicht überleben.



"Diese Domäne ist eine schwanzartige Fortsetzung der RNA-Polymerase, die als Andockstelle für viele andere Proteine dient und so die molekularen Ereignisse im Zellkern koppelt und integriert", berichtet Cramer. "Das funktioniert in etwa wie bei den Fließbändern in der Autoproduktion: Auch bei der RNA-Synthese geht alles Hand in Hand, und wenig oder nichts ist dem Zufall überlassen." Bei Fehlern in der Produktion von mRNAs kann es zu gravierenden Störungen kommen. Deshalb ist dieser für die Zelle so kritische Vorgang streng kontrolliert. Das bei der Transkription entstehende Produkt ist aber noch nicht die fertige mRNA. Zahlreiche Modifikationen an dem fadenförmigen Molekül sind dazu nötig.

Die C-terminale Domäne der RNA-Polymerase vermittelt die Verknüpfung von Transkription und Prozessierung der dabei entstehenden RNA. CTD liegt nahe der Stelle der RNA-Polymerase, wo die RNA austritt. All jene Proteine binden an die Region, die aus diesem Molekül eine fertige mRNA machen. Und zwar Schritt für Schritt: Zu Beginn der Transkription wird CTD chemisch modifiziert. Dadurch können Proteine binden, die am Anfang der RNA Veränderungen vornehmen. Im Verlauf der Transkription kommt es zu anderen Modifikationen der CTD, so dass weitere RNA-prozessierende Proteine binden können. Die Modifikationen der CTD werden erst rückgängig gemacht, wenn die betreffende DNA-Sequenz vollständig abgeschrieben ist, und die fertige mRNA vorliegt. Dann lösen sich alle Proteine von der CTD. Die RNA-Polymerase kann einen neuen Zyklus und eine neue Abschrift beginnen.

Zahlreiche RNA-prozessierende Proteine erkennen CTD mit Hilfe einer ihnen allen gemeinsamen Domäne. Diese Domäne ist bei verschiedenen Faktoren strukturell sehr ähnlich, wie Meinhart und Cramer zeigen konnten. Acht Helices schaffen eine zentrale Furche, an die ein Abschnitt der C-terminalen Domäne binden kann. Die an der CTD vorgenommenen Modifikationen verändern ihre dynamische Struktur so, dass nur die jeweils im zeitlichen Ablauf gewünschten Proteine binden können. "CTD ist also so etwas wie eine veränderbare Plattform für die Ansammlung vieler beteiligter Aktivitäten", berichtet Cramer. Ohne Modifikationen scheint CTD zu einer sehr kompakten Spirale zu schrumpfen, an die kein Protein mehr binden kann, die aber zu Beginn der Transkription in den RNA-Polymerase-Komplex integriert wird. (suwe)

Ansprechpartner:

Prof. Dr. Patrick Cramer
Genzentrum, Department für Chemie und Biochemie
Te.: 089/2180-76953, Fax: -76999
E-Mail: cramer@LMB.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.LMB.uni-muenchen.de/cramer

Weitere Berichte zu: C-terminale CTD Domäne Modifikationen Protein RNA-Polymerase Transkription Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Treibjagd in der Petrischale
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie