Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Schicksal der Gehirnstammzellen

05.07.2004


In Kultur gehaltene neurale Vorläuferzellen, die sich zu Gliazellen (grüne Färbung)und Nervenzellen (rote Färbung) differenzieren. Blaue Färbung: Zellkerne. Bild: Max-Planck-Institut für molekulare Genetik


Max-Planck-Forscher beschreiben erstmals dynamische Aktivitätsänderungen zahlreicher Gene während der Differenzierung neuraler Vorläuferzellen


In bestimmten Gehirnregionen erwachsener Säugetiere finden sich Stammzellen, die sich zeitlebens zu neuen Nervenzellen entwickeln können. Die molekularen Mechanismen, welche für die Erhaltung eines unreifen Vorläuferzellstadiums im erwachsenen (adulten) Organismus und den Übergang unreifer in spezialisierte Zellen sorgen, sind weitgehend unverstanden. Wissenschaftlern des Max-Planck-Instituts für molekulare Genetik in Berlin ist es jetzt gelungen, Gene zu identifizieren, deren Aktivität sich im Verlauf dieses Differenzierungsprozesses ändert. In Vorläuferzellen aus der Subventrikularzone des Mäusehirns haben sie mithilfe von DNA-Microarrays die Aktivität tausender Gene zu verschiedenen Zeitpunkten der Differenzierung bestimmt. Dabei fanden sie neue Kandidatengene, die wahrscheinlich bei der Erhaltung, Differenzierung und Wanderung der Zellen eine Rolle spielen. Ihre Ergebnisse wurden gerade in der aktuellen Ausgabe der renommierten Fachzeitschrift "The Journal of Neuroscience" veröffentlicht (Journal of Neuroscience, 30. Juni 2004).

Ulrike Nuber und ihre Mitarbeiter am Max-Planck-Institut für molekulare Genetik in Berlin beschäftigen sich mit den verschiedenen Entwicklungsstufen bzw. Zuständen, die adulte Stammzellen annehmen können. Die so genannte Differenzierung betrifft auch Stammzellen im Gehirn. Ihre zellulären Zustände werden durch die spezifische Aktivität tausender Gene bestimmt. Um grundlegende Mechanismen bei der Differenzierung adulter Stammzellen zu verstehen, haben die Wissenschaftler die Genaktivitäten verschiedener Stammzellzustände von der undifferenzierten Vorläuferzelle (Ausgangszustand) bis hin zur differenzierten Zelle (Endzustand) untersucht.


Die beteiligten Gene wurden nach funktionellen Gesichtspunkten gruppiert und biologischen Vorgängen zugeordnet, wie der Differenzierung selbst, Änderungen des Zellzyklus, der Zellstruktur oder dem Zellzusammenhalt. In Vorläuferzellen aktive Gene, deren Aktivität im Verlauf der Differenzierung sinkt, sind wahrscheinlich für den unreifen Zustand der Zellen wichtig. Sie kodieren beispielsweise für Wachstumsfaktoren oder Proteine des Extrazellularraums. Deren Bildung weist darauf hin, dass sich die Vorläuferzellen selbst eine Umgebung im Gehirn schaffen, in der sie und aus ihnen hervorgehende Zellen existieren können. Durch Wachstumsfaktoren können sie auch mit benachbarten Zellen kommunizieren. Andere Gene wiederum spielen wahrscheinlich eine Rolle bei der Wanderung von sich differenzierenden Zellen.

Die Genexpressionsdaten liefern wichtige Grundlagen für künftige Studien, mit denen die Wissenschaftler die Entstehung neuer Nervenzellen im adulten Gehirn aufklären wollen. Vom besseren Verständnis dieses Prozesses erhoffen sich Forscher neue Therapieansätze für degenerative Erkrankungen und Verletzungen des zentralen Nervensystems.

Weitere Informationen erhalten Sie von:

Dr. Ulrike Nuber
Max-Planck-Institut für molekulare Genetik, Berlin
Tel.: 030 8413-1243, Fax: -1383
E-Mail: nuber@molgen.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.molgen.mpg.de

Weitere Berichte zu: Differenzierung Nervenzelle Stammzelle Vorläuferzelle Wanderung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Warum der Brennstoffzelle die Luft wegbleibt
28.03.2017 | Technische Universität Wien

nachricht Chlamydien: Wie Bakterien das Ruder übernehmen
28.03.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie