Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedankenspiel mit goldenen Bällen

07.05.2004


Computerberechnungen postulieren einen ungewöhnlichen Goldcluster: Ein Fulleren aus 32 Goldatomen



Nicht nur verwöhnte Prinzessinnen, auch Chemiker spielen mit goldenen Bällen - bisher allerdings nur in der Theorie: Computerberechnungen an der Universität Helsinki, Finnland, sprechen für die Existenz eines überraschenden Clusters aus 32 Goldatomen, die zu einer winzigen käfigartigen Kugel verknüpft sind.

... mehr zu:
»Bälle »Goldatom »Goldkugel »Molekül


Zunächst hatte man das postulierte Molekül aus 32 Goldatomen (Au32) als einen weiteren, ziemlich uninteressanten Goldcluster erachtet. Jetzt aber stellten Mikael Johansson, Dage Sundholm und Juha Vaara bei weiter gehenden Berechnungen fest, dass es neben dem gewöhnlichen raumfüllenden "Klümpchen" noch ein weiteres stabiles Au32-Isomer zu geben scheint. Dieses Isomer soll eine sphärische Hohlkugel von etwas weniger als einem Nanometer Durchmesser sein und wäre damit das erste Fulleren aus Goldatomen. Die Bezeichnung Fullerene für eine molekulare Hohlkugel leitet sich von einer 1985 entdeckten Kohlenstoffmodifikation ab: Molekülen aus 60 Kohlenstoffatomen, die zu kugeligen Käfigen aus 12 Fünfecken und 20 Sechsecken verknüpft sind - genau so ist auch ein Fußball aufgebaut. Dieses Bauprinzip erinnerte die Entdecker an die riesige Kuppel aus Sechs- und Fünfecken, die der Architekt Buckminster Fuller für die Expo 1967 entworfen hatte, und benannten die Moleküle nach ihm. Aber zurück zu den Goldkugeln. Ihre vorausgesagte Struktur lässt sich von der des C60-Fullerens ableiten, indem man die Ecken und die Flächen des "Fußballs" vertauscht. Man stelle sich einfach in der Mitte eines jeden "Lederflickens" ein Goldatom vor. Auf diese Weise entsteht ein Goldball mit dreieckigen Flächen, bei dem jedes Goldatom mit fünf oder sechs Nachbarn verknüpft ist.

Es seien Effekte, wie sie durch Einsteins berühmte Relativitätstheorie beschrieben werden, die das Au32-Molekül stabilisierten, erklären Johansson und seine Kollegen. Für die goldenen Fullerene sagen sie besondere elektronische Eigenschaften voraus. So sollen sich die äußeren Elektronen der Goldatome fast völlig frei über den gesamten Cluster bewegen können - und zwar noch wesentlich stärker als das bei Kohlenstoff-Fullerenen der Fall ist. Der Hohlraum im Innern wird durch diese beweglichen Elektronen von äußeren Magnetfeldern abgeschirmt wie in einem winzigen magnetischem Faradayschen Käfig. Für die magnetische Abschirmung im Innern der Goldkugeln wird ein neuer Rekordwert vorhergesagt.

Eine denkbare Anwendung für die Goldkugeln - sollten sie sich denn herstellen lassen - sehen die Forscher unter anderem im Pharma-Bereich: Der Wirkstoff wird im Hohlraum der Kugel eingeschlossen, außen könnten spezielle Biomoleküle oder ganze Viren angeknüpft werden (was bei Golclustern sehr gut geht), die dem Transporter den Weg zu seinem Ziel weisen.

Kontakt: M. Johansson
Laboratory for Instruction in Swedish
Department of Chemistry
University of Helsinki
P.O. Box 55
00014 Helsinki
Finland

Tel.: (+358) 9-191-50185
Fax: (+358) 9-191-50169

E-mail: mikael.johansson@helsinki.fi

Angewandte Chemie Presseinformation Nr. 20/2004
Angew. Chem. 2004, 116 (20), 2732 - 2735

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Bälle Goldatom Goldkugel Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics