Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzyme deutlich unter Weltmarktpreisen

13.04.2004


Wissenschaftler der Universität Bonn haben ein Verfahren entwickelt, mit dem sich hoch effektive Enzymmischungen zu einem Bruchteil des Weltmarktpreises produzieren lassen. Ihre Methode könnte beispielsweise dazu beitragen, Biogasanlagen erheblich effektiver zu machen.



Viele kennen sie ja nur vom Waldspaziergang oder als unappetitlichen Bewuchs auf überaltertem Brot. Dr. Udo Hölker jedoch lässt auf seine Versuchsobjekte nichts kommen: "Vergessen Sie Bakterien - Pilze können viel mehr!" Der Uni-Wissenschaftler und Geschäftsführer der Firma "Bioreact" will die erstaunlichen Fähigkeiten der pilzlichen Mikroorganismen in den Dienst der Umwelt stellen. Sein Plan: Enzymmischungen, die von verschiedenen Schimmelpilzen produziert werden, sollen die Methan-Produktion in Biogasanlagen ankurbeln - "und das konkurrenzlos günstig."



Das leicht brennbare Gas lässt sich einerseits zur Stromerzeugung in Block-Heizkraftwerken einsetzen, ist aber auch für Brennstoffzellen geeignet. Natürlicherweise entsteht es beispielsweise im Pansen von Kühen. Bei Labmagen-Operationen vergewissern sich Tierärzte gerne per Flammprobe, ob sie mit ihrem Skalpell nicht fälschlicherweise die Pansen-Wand perforiert haben. Urheber der Rinder-Blähungen sind so genannte "methanogene" Bakterien. Und die sind nicht wählerisch: Unter geeigneten Bedingungen können sie aus nahezu allen organischen Abfällen Methan erzeugen. Nachwachsende Rohstoffe, Futtermittelabfälle, Molkerei-Rückstände oder Essensreste aus Restaurants akzeptieren sie dabei genauso gerne wie Mist oder Gülle.

Pilze helfen Bakterien

"Ein großer Teil nachwachsender Rohstoffe wie Gras oder Mais, aber auch der Bio-Abfälle besteht aus schwer abzubauenden langen Zuckerketten - Beispiele sind Zellulose oder Hemizellulosen -, und daran beißen sich die methanogenen Bakterien die Zähne aus", erklärt Dr. Hölker. Schon lange kursiert daher die Idee, den Bakterien bei ihrer Arbeit unter die Arme zu greifen: Bestimmte Enzyme können nämlich die Zuckerketten knacken und in für die Methanproduzenten verdauliche Häppchen zerlegen. Problem ist nur: Die Enzyme sind teuer, und sie haben so ihre Vorlieben. "Mit einem oder zwei Enzymen lässt sich das organische Material nicht vernünftig vorverdauen, dazu sind die Substanzen, die sie zerlegen sollen, einfach zu unterschiedlich", meint der Mikrobiologe. Fazit: Mischungen aus vielen Enzymen müssen ran, und billig sollen sie außerdem sein.

Hier kommen Hölkers Pilze ins Spiel: "Pilze passen ihre extrazellulären Enzyme an das zur Verfügung stehende Substrat an. Das heißt: Wenn man sie auf zellulosereiche Diät setzt, produzieren sie genau die Enzyme, die sie benötigen, um diese langen Zuckerketten abzubauen." Zusammen mit seinen Mitarbeitern hat der Mikrobiologe verschiedene Pilze isoliert, die das besonders gut können. In einer Pilotanlage sollen sie nun ihre Fähigkeiten unter Beweis stellen. "Dazu geben wir mehrere Pilze, die sich gut miteinander ’vertragen’ müssen, auf einen Ausgangsnährstoff, beispielsweise Rübenpellets, und lassen sie eine Weile wachsen", erklärt Hölker. "Nach einer bestimmten Zeit geben wir dann ein wenig von dem Reststoff hinzu, aus dem wir Biogas erzeugen wollen. Wir lassen dem Pilzmix 24 Stunden Zeit, sich auf das neue Substrat einzustellen und die gewünschten Enzyme zu produzieren, und geben ihn dann in die Biogasfermenter mit den Methan-Bakterien. Dort spalten die Enzyme die Biomasse, so dass die Bakterien daraus Methan erzeugen können." Das Ganze geht kontinuierlich: Eine Förderschnecke wird am Anfang mit Pilzsporen und Rübenpellets beimpft und transportiert die munter wuchernde Kultur mitsamt den Enzymen in den folgenden Tagen sukzessive bis in den Fermenter.

Effektiver und kostengünstiger

Die Idee funktioniert zumindest im Labor bislang ausgezeichnet: "Die Biogasausbeute ist um 30 bis 50 Prozent höher als ohne unseren Enzymzusatz - mit Mischungen aus vier oder fünf reinen, konventionell hergestellten Enzymen erreicht man keine vergleichbare Steigerung." Diese sind zudem erheblich teurer in der Herstellung, vor allem, weil sie meist kostspielig konzentriert und gereinigt werden müssen, bevor sie in den Handel kommen. Für die Biogas-Erzeugung ist das unnützer Aufwand: Ob im Reaktor neben den erwünschten Enzymen auch noch ein paar Kilo Pilzmyzel landen, ist letztlich egal. "Unsere Enzyme kosten nur einen Bruchteil des Weltmarktpreises, den man für reine Enzyme zahlen würde", verkündet der Geschäftsführer von "Bioreact" und Chef von elf Mitarbeitern nicht ohne Stolz. "Wenn es um kostengünstige pilzliche Enzymmischungen geht, sind wir unschlagbar!"

Ansprechpartner:

Dr. Udo Hölker
Institut für Zelluläre und Molekulare Botanik der Universität Bonn
Telefon: 0228/73- 5510
E-Mail: u.hoelker@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Bakterium Enzym Enzymmischung Pilz Zuckerkette

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE