Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher lassen Muskelmotor rückwärts laufen

04.02.2004


Modell eines künstlichen, "rückwärtslaufenden" Motors, der an F-Aktin gebunden ist. Das künstliche Motorprotein besteht aus der Motordomäne eines Klasse-1 Myosins (grau), einem 4-Helixbündel-Bereich aus dem human Guanylate Binding Protein-1 (rot) und zwei Actinin-Wiederholungseinheiten (orange). Das gezeigte Aktinfilament besteht aus fünf Monomeren (grün und blau).


Die Translationsbewegung des Hebelarm-Endes (roter Pfeil) ist abhängig vom Drehwinkel und der Richtung, in die das Hebelarm-Ende im Verhältnis zur Drehachse zeigt.


Wissenschaftlern aus Hannover und Heidelberg ist es erstmals gelungen, die Bewegungsrichtung eines biologischen Motorproteins gezielt umzukehren


Spezielle Proteine mit gewünschten Eigenschaften maßschneidern zu können, ist ein wichtiges Ziel der Bio- und Nanotechnologie. Von besonderem Interesse ist hierbei Myosin, ein winziger molekularer Motor, der auch unsere Muskeln bewegt. Forscher der Medizinischen Hochschule Hannover (MHH) und des Heidelberger Max-Planck-Instituts für medizinische Forschung haben jetzt erstmals einen nur wenige Nanometer großen "künstlichen" Myosin-Motor aus drei molekularen Bausteinen zusammengebaut, der sich gezielt rückwärts bewegen kann (Nature, 5. Februar 2004). Dieser Erfolg hat Bedeutung für die Biotechnologie sowie die molekulare Medizin und Analytik.

Molekulare Motoren erzeugen Kraft und verrichten mechanische Arbeit in lebenden Zellen. Die erforderliche Energie beziehen sie aus dem Abbau von ATP (Adenosintriphosphat). Generell unterscheidet man bei diesen biologischen Antrieben zwischen Rotationsmotoren, wie beispielsweise dem ATP-prodzierenden Enzym F1F0-ATPase in Mitochondrien oder dem bakteriellen Flagellenantrieb, sowie Linearmotoren, die sich über die "schienenähnlichen" Aktinfilamente oder Mikrotubuli des Zytoskeletts im Innern einer Zelle bewegen. Diese molekularen Motoren bilden die Grundlage für fast alle biologischen Bewegungen und ermöglichen es subzellulären Strukturen, ganzen Zellen oder sogar Organismen, sich gerichtet zu bewegen.


Die Myosine gehören zu einer außerordentlich großen Familie von molekularen Linearmotoren, die Kraft und Bewegung entlang von polaren Aktinfilamenten in der Zelle erzeugen. Myosine bestehen aus drei Domänen mit jeweils spezifischer Funktion: Über die etwa acht Nanometer große "Motordomäne" findet die Wechselwirkung mit Aktin und ATP statt. Die Motordomäne ist der am stärksten konservierte Bereich des Myosins und enthält als Strukturelemente ein siebensträngiges Faltblatt mit einigen darum herum gefalteten Helices. In der "Nackenregion" von Myosin, die als Hebelarm funktionieren kann, befinden sich Bindungsstellen für Calmodulin oder Calmodulin-ähnliche Proteine. Die carboxyterminale "Schwanzdomäne" schließlich zeigt die stärkste Vielfalt und für die einzelnen Myosinklassen typische Unterschiede.

Um Motorproteine, wie das Myosin, verstehen und letztlich auch künstlich beeinflussen zu können, nutzt man in der Forschung ein breites Methodenspektrum, vom computergestützten Proteindesign über die gentechnische Produktion, Röntgenstrukturanalyse und kinetische Untersuchungen bis hin zur direkten Messung der Bewegungsaktivität und Kraftentfaltung einzelner Motormoleküle. Den Forschern der MHH und des Heidelberger Max-Planck-Instituts ist es nun mit einem eigens dazu entwickelten Methodenmix gelungen, aus rekombinanten Motorproteinen mit gezielt veränderten Eigenschaften einen "rückwärtslaufenden" Motor zusammen zu bauen.

Der neue molekulare Motor besteht aus drei unabhängigen Bausteinen: einer "vorwärtslaufenden" Motordomäne eines Klasse-1 Myosins, einem 4-Helixbündel-Bereich aus human Guanylate Binding Protein-1 sowie zwei Actinin-Wiederholungseinheiten (s. Abbildung 2). Die langen, starren Actinin-Wiederholungseinheiten dienen dabei als künstlicher Hebelarm, der kleine Konformationsänderungen innerhalb der Motordomäne verstärkt und dadurch Bewegungen mit einer Amplitude von etwa 10 Nanometer erzeugt. Der 4-Helixbündel-Bereich dient dazu, die Richtung, in die der Hebelarms wirkt, um 180 Grad zu drehen. Dabei ist die Translationsbewegung des Hebelarm-Endes abhängig vom Drehwinkel und der Richtung in die das Hebelarm-Ende relativ zur Drehachse zeigt (s. Abbildung 2).

Mit diesem "Motorkonstrukt" ist es den Wissenschaftlern gelungen, die molekulare Grundlagen aufzuklären, warum sich Myosin stets in eine spezifische Richtung bewegt, und die so genannte "Hebelarm-Hypothese" zu bestätigen, mit der man die Arbeitsweise von Myosin theoretisch zu erklären versucht. Die Forscher stützen mit ihrem künstlichen Motor ein Modell, wonach sich die Motordomänen von Myosinen und Kinesinen inhärent immer zum (+)-Ende der Filamente bewegen. Die Umkehr der Bewegungsrichtung, die man auch in natürlich vorkommenden Mitgliedern beider Motorproteinfamilien beobachten kann, haben die Forscher durch den gezielten Einbau einer geeigneten Domäne in den Nackenbereich des künstlich montierten Motorproteins erreicht.

Das rationale Design eines biologischen Motorproteins mit einer gewünschten Funktion - hier der "umgekehrten" Laufrichtung - ist ein wichtiger Erfolg auf dem Weg, Proteine mit maßgeschneiderten Eigenschaften zu bauen. "Unsere Arbeit zeigt deutlich, wie weit man heute schon beim Protein-Design gekommen ist", sagt Prof. Dietmar Manstein, Lehrstuhlinhaber an der MHH und zuvor Arbeitsgruppenleiter am Max-Planck-Institut für medizinische Forschung. "Das war kein Trial-and-Error, sondern wir haben gezielt geeignete Komponenten ausgewählt und verknüpft, um ein neues Protein mit den gewünschten Eigenschaften herzustellen." Der maßgeschneiderte Bau molekularer Motoren, deren Geschwindigkeit, Stärke und Richtung man einstellen kann, ermöglicht vielfältige Anwendungen, die von der Nanotechnologie bis zur molekularen Medizin reichen. Beispielsweise lassen sich die dielektrischen Eigenschaften von Chipoberflächen dynamisch verändern und einstellen, wenn man Methoden der molekularen Lithographie mit der Selbstorganisation geordneter Nanostrukturen aus Motorproteinen verbindet.

Das Projekt wurde unterstützt von der Max-Planck-Gesellschaft sowie der Deutschen Forschungsgemeinschaft im Rahmen des Schwerpunktprogramms "Molekulare Motoren".

Weitere Informationen erhalten Sie von:

Prof. Dietmar J. Manstein
Institut für Biophysikalische Chemie
Medizinische Hochschule Hannover
Tel.: 0511 532-3700, Fax: -5966
E-Mail: manstein@bpc.mh-hannover.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.bpc.mh-hannover.de

Weitere Berichte zu: MHH Max-Planck-Institut Motordomäne Motorprotein Myosin Nanometer Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops