Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumorwachstum unter dem Mikroskop

03.02.2004


Bislang herrschte bei den Forschern Unklarheit über die molekularen Mechanismen im Hinblick auf die genetische Instabilität, die durch ionisierende Strahlung verursacht wird. Mit Hilfe der modernen Genetik wurden in einem von der EU finanzierten Projekt deshalb eingehend die Chromosomveränderungen untersucht, die mit einer durch ionisierende Strahlung induzierten Malignität einhergehen.



Den Wissenschaftlern sind die malignen Auswirkungen ionisierender Strahlung seit Jahren bekannt, doch über die dynamischen molekularen Vorgänge während des Tumorwachstums herrschte weitgehend Unklarheit. Seitdem die moderne Genetik Einzug in die Wissenschaft gehalten hat, gestattet die Züchtung menschlicher Zellkulturen aus unterschiedlichen Geweben eine Analyse der einzelnen genetischen Phasen der Tumorentwicklung, die durch ionisierende Strahlung hervorgerufen wird.



Unter Nutzung dieser neuartigen Möglichkeit entstand in diesem Projekt eine detaillierte Beschreibung der molekularen Mechanismen im Zusammenhang mit der Herkunft einer durch Strahlung induzierten genetischen Instabilität. Im Zuge der Forschungsarbeiten wurden Kulturen von menschlichen Zellen verwendet, die aus klinisch relevanten Geweben wie etwa der menschlichen Brust stammten. Diese Clones weisen normale Chromosomen und bestimmte Wachstumseigenschaften auf und wurden wiederum als Zielsysteme für eine maligne Transformation durch ionisierende Strahlung verwendet.

Konkret wurden der Zusammenhang zwischen Chromosom-Instabilitäten und Modifikationen der Telomer-Dynamik sowie die Rolle der Telomerase beim Tumorwachstum studiert. Bei der Telomerase handelt es sich um ein DNS-Enzym, das normalerweise auf die Chromosomenden (Telomere) wirkt und während der Entwicklung der meisten menschlichen Krebsarten aktiviert werden kann. Ein hoch spezifisches Gen, das die Kodierung der katalytischen Untereinheit der Telomerase steuert, ermöglichte die Analyse des Prozesses der malignen Konversion menschlicher Zellen.

Nützliche Daten wurden auch zur Rolle gefunden, die die Telomerase-Aktivierung beim Fortschreiten von Krebserkrankungen sowohl in vitro (also in Zellkulturen) als auch in vivo (bei genetisch manipulierten Hamstern) spielt. Wie die Studie zeigte, verursachen Telomerveränderungen eine Chromosom-Instabilität, eine Genamplifikation über einen Bruch-/Fusions-/Überbrückungszyklus sowie Chromosom-Unausgewogenheiten wie etwa zusätzliche oder fehlende Chromosomarme. Diese mutagenen Effekte wurden sowohl in Epithel- als auch in durch Strahlung induzierten Tumoren beobachtet.

Das Projekt lieferte ein besseres Verständnis für die Bedeutung der Telomere und der Telomerase-Aktivierung bei der Tumorentwicklung. Das bessere Verständnis dieser biomolekularen Mechanismen könnte letztlich zu einer Senkung der Häufigkeit von Krebserkrankungen aufgrund ionisierender Strahlung führen. Darüber hinaus können die Erkenntnisse aus dem Projekt maßgeblich zur Entwicklung neuer Tests zum Nachweis von Zellen beitragen, die in Tumoren zirkulieren.

Kontakt:

Laure Sabatier
Commissariat a l’energie atomique
DSV-DRR-LRO BP6
92265 Fonbtenay-aux-Roses, Frankreich
Tel: +33-1-46548-351, Fax: -758
Email: sabatier@dsvidf.cea.fr

Laure Sabatier | ctm
Weitere Informationen:
http://www.dsvidf.cea.fr

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics