Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanomotoren auf der Überholspur

17.12.2014

Von der Science Fiction auf dem Weg in die Realität: Chemisch angetriebene Mikro- und Nanomotoren

Spätestens seit dem Film „Die phantastische Reise“ von 1966, in dem ein U-Boot geschrumpft und in die Blutbahn eines Menschen injiziert wird, spukt die Idee in unseren Köpfen herum, eines Tages winzige „Mikromaschinen“ und „Nanoroboter“ filigrane „Reparaturarbeiten“ in unseren Organen oder gar einzelnen Zellen durchführen zu lassen. Inzwischen scheint dies in den Bereich des Möglichen zu rücken. Stuttgarter Wissenschaftler präsentieren in der Zeitschrift Angewandte Chemie den aktuellen Stand der Forschung auf dem Gebiet der katalytischen Mikro- und Nanomotoren.


Rein synthetische Mikro- und Nanomotoren haben meist die Form von Nanodrähten, -kugeln oder -röhren.

(c) Wiley-VCH

Damit sich die winzigen Motoren in Bewegung setzen, können sie extern angetrieben werden, etwa durch elektrische oder magnetische Felder oder Schallwellen. „Mikro- und Nanomotoren mit Selbstantrieb können autonom agieren, indem sie sich, z.B. durch katalytische Reaktionen, in Flüssigkeiten selbst antreiben“, erläutern Samuel Sánchez und seine Co-Autoren vom Max-Planck-Institut für Intelligente Systeme in Stuttgart in ihrem Übersichtsartikel. „Ferngesteuerte Nanomotoren können eine Ladung zu den gewünschten Zielen transportieren, sich in Biomaterialien hineinbohren, ihre Umgebung abtasten, Flüssigkeiten vermischen oder pumpen und verunreinigtes Wasser säubern“, so Sánchez. Derzeit bestehe das wissenschaftliche Ziel darin, die beste Architektur für den Selbstantrieb zu finden, den Bewegungsmechanismus zu verstehen und eine genaue Steuerung der Bewegung zu erzielen. Zudem steht die Suche nach biokompatiblen Treibstoffen und Antriebsformen im Vordergrund.

Rein synthetische Mikro- und Nanomotoren haben meist die Form von Nanodrähten, -kugeln oder -röhren. Nanodrähte aus Kombinationen verschiedener Metalle können z.B. durch eine so genannte Selbstelektrophorese angetrieben werden, bei der sie sich als Folge einer asymmetrischen Ionenverteilung in einem selbsterzeugten elektrischen Feld fortbewegen. Interessant sind auch Nanokügelchen mit zwei unterschiedlichen Hemisphären. So kann eine Hälfte mit einem Katalysator beschichtet sein und für eine asymmetrische Verteilung von Reaktionsprodukten sorgen, die die Kügelchen vorantreibt. Düsenförmige innen mit einem Katalysator beschichtete Mikro- oder Nanoröhrchen sind besonders vielseitig und leistungsstark, wenn sie über einen Blasenantrieb verfügen: In ihrem Inneren findet eine katalytische Reaktion statt, bei der ein Gas entsteht, meist Sauerstoff, der als Blasen aus der breiteren Öffnung austritt und die Düsen antreibt. Als „Treibstoff“ dient meist Wasserstoffperoxid. In immobilisierter Form dienen die Düsen auch als Mikropumpen, etwa für mikrofluidische Diagnostik- und Analyse-Chips.

Im biomedizinischen Bereich hofft man beispielsweise auf Mikromotoren, die sich selektiv in Tumorzellen hineinbohren und diese zerstören. Selbstangetriebene Nanotransporter könnten Wirkstoffe gezielt zu erkrankten Organen transportieren. Andere potenzielle Anwendungen stammen aus dem Bereich der Umweltsanierung. „So können hydrophob beschichtete Mikromotoren Öltropfen aus kontaminiertem Wasser abfangen und abtransportieren. Andere können organische Schadstoffe in Wasser abbauen und dabei die Lösung aktiv mischen“ berichtet Sánchez.

Angewandte Chemie: Presseinfo 42/2014

Autor: Samuel Sánchez, Max-Planck-Institut für Intelligente Systeme (Germany), http://www.is.mpg.de/sanchez

Permalink to the original article: http://dx.doi.org/10.1002/ange.201406096

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.


Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Warum der Brennstoffzelle die Luft wegbleibt
28.03.2017 | Technische Universität Wien

nachricht Chlamydien: Wie Bakterien das Ruder übernehmen
28.03.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie