Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Troubleshooting" im Zellkern

07.08.2003


Wie Kopierfehler bei Gen-Abschriften beseitigt werden



Die menschliche Erbinformation ist in der DNA gespeichert. Wie ein Bauplan muss sie aber auch umgesetzt werden: Einzelne DNA-Abschnitte, die Gene, werden in der lebenden Zelle in Proteine übersetzt. Die RNA-Polymerase II (Pol II) übernimmt dabei einen entscheidenden Teil, nämlich den Prozess der so genannten Transkription. Das Enzym liest also einzelne Gene ab und erstellt eine Kopie, die aus der Nukleinsäure RNA besteht. Dabei kann es allerdings zu Kopierfehlern kommen, die in der Synthese falsch zusammengesetzter RNA resultieren. Außerdem können bestimmte Gen-Abschnitte die gesamte Transkription zum Halten bringen. Professor Patrick Cramer und seine Mitarbeiter Hubert Kettenberger und Karim-Jean Armache vom Genzentrum der Ludwig-Maximilians-Universität München konnten jetzt zeigen, dass in Fällen, in denen die Transkription stoppt oder ein Fehler in die Genkopie RNA eingebaut wurde, die große Stunde eines bis dahin wenig beachteten Transkriptionsfaktors schlägt (Cell, Bd. 114, S. 347-357, 2003). Dieses Protein namens TFIIS lagert sich an Pol II an und bewirkt im Inneren des Enzyms eine Strukturänderung. Daraufhin ist Pol II in der Lage, den fehlerhaften oder störenden RNA-Abschnitt zu entfernen und die Transkription bis zum Ende durchzuführen.

... mehr zu:
»Enzym »Gen »Pol »Protein »RNA »TFIIS »Transkription »Zellkern


"Die Transkription ist ein hochkomplexer Prozess, der hervorragend durch Strukturanalysen der beteiligten Faktoren untersucht werden kann", so Cramer. Erst vor wenigen Monaten konnten die Forscher ihre Ergebnisse zur Strukturbestimmung der Pol II in den Proceedings of the National Academy of Sciences veröffentlichen - und lieferten damit die bis jetzt größte bekannte Molekularstruktur eines asymmetrischen Proteinkomplexes. Sie gehen jetzt einen Schritt weiter mit der Analyse des Komplexes von Pol II und des zusätzlichen Faktors TFIIS. "Das ist nicht leicht, weil die Kristalle, die wir aus mehreren Proteinen zur Untersuchung bilden, nicht sehr beständig sind", berichtet Kettenberger. "Außerdem arbeiten wir in diesem Fall mit einem außergewöhnlich großen Komplex", ergänzt Armache. "Pol II alleine besteht schon aus zwölf Protein-Untereinheiten."

Das genetische Material höherer Organismen befindet sich in den Zellkernen. Die zelluläre Maschinerie zur Proteinsynthese aber liegt in der umgebenden Zellflüssigkeit. Deshalb überbringt ein "Bote" die in den Genen enthaltene Information aus dem Zellkern an ihren Bestimmungsort. Das ist die "messenger-RNA" oder mRNA. Sie wird in höheren Zellen von der Pol II gebildet, die sie als Abschriften der entsprechenden Gene synthetisiert. Zunächst muss das Enzym Gene erkennen, die in mRNA übersetzt werden sollen. Dann "dröselt" Pol II an der betreffenden Stelle die doppelsträngige DNA auf und umschließt wie eine Klammer einen der beiden Stränge, an dem sie dann entlangleitet. Schritt für Schritt produziert das Enzym dabei mit höchster Präzision einen RNA-Strang der der kodierenden DNA-Sequenz gleicht.

Dabei kann es allerdings zu Problemen kommen. Bestimmte DNA-Sequenzen etwa können von Pol II nur schwer kopiert werden. Das kann dazu führen, dass das Enzym plötzlich rückwärts an der DNA entlangläuft und durch den dann ebenfalls rückwärts laufenden RNA-Abschnitt "verstopft" wird, was zu einem Transkriptions-Stopp führt. Wie die Wissenschaftler zeigen konnten, kommt dann TFIIS ins Spiel. "TFIIS windet sich entlang der Oberfläche von Pol II und dringt bis in das aktive Zentrum im Inneren des Enzyms vor, wo die Transkription stattfindet", so Cramer. "Das Erstaunliche ist, dass dieses Protein dort dann eine bedeutende Strukturänderung bewirken kann." TFIIS verstärkt eine Funktion von Pol II, die sonst nur sehr schwach ausgeprägt ist: das Abschneiden von RNA. TFIIS verändert das aktive Zentrum derart, dass Pol II den fehlerhaften RNA-Abschnitt schnell abtrennen und dann mit der Transkription fortfahren kann.

Enzyme, die Nukleinsäuren synthetisieren, verfügen oft auch über die Fähigkeit, die synthetisierten Stränge wieder zu durchtrennen, um eine Fehlerkorrektur zu ermöglichen. Klassische DNA-Polymerasen, die für die Verdopplung des Erbguts verantwortlich sind, haben zwei getrennte aktive Zentren. Eines synthetisiert die Nukleinsäure, das andere kann einen fehlerhaften Strang abschneiden. Dies aber erfordert große Bewegungen des ständig wachsenden DNA-Stranges, weil er zwischen den beiden aktiven Zentren hin- und herwandern muss. Die Wissenschaftler konnten nun im Fall von Pol II zeigen, dass die Synthesefunktion und das Abschneiden des RNA-Stranges nicht etwa an verschiedenen Stellen des Enzyms stattfinden. "Damit verfügt Pol II wirklich über ein einzigartiges aktives Zentrum", meint Cramer. "Denn es kann je nach Bedarf zwischen Synthese- und Korrektur-Modus hin- und herschalten."

Ansprechpartner:

Professor Dr. Patrick Cramer
Institut für Biochemie und Genzentrum der LMU
phone: +49-89-2180-76953
email: cramer@LMB.uni-muenchen.de

Cornelia Glees-zur Bonsen | idw
Weitere Informationen:
http://www.lmb.uni-muenchen.de

Weitere Berichte zu: Enzym Gen Pol Protein RNA TFIIS Transkription Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften