Neuentdeckte Stickstoff-fixierende Reaktion könnte eine Rolle bei der Entstehung des Lebens gespielt haben

Urnebel wabern über die Erde, die ersten winzigen Lebewesen entstehen. Zum Aufbau von Amino- und Nucleinsäuren brauchte es das Element Stickstoff in der „Ursuppe“. Molekularer Stickstoff (N2), wie er in der Atmosphäre vorkommt, ist allerdings als Quelle ungeeignet, da er viel zu reaktionsträge ist. Stickstoff muss also in einer wesentlich reaktiveren Form an der Entstehung des Lebens beteiligt gewesen sein: als Ammoniak (NH3).

Aber wie entstand Ammoniak aus Luftstickstoff? Jenaer Forscher haben eine neue Theorie.

Die technische Ammoniak-Synthese läuft nur unter Einsatz von Katalysatoren und bei sehr hohen Temperaturen und Drücken, denn die Bindung zwischen den beiden Atomen des Stickstoff-Moleküls ist sehr schwer zu knacken. Prinzipiell geht es aber auch sanfter: Stickstoff-fixierende Bakterien wandeln Luftstickstoff zu Ammoniak um. Bis zu 200 Mio. Tonnen schätzungsweise entstehen so pro Jahr. Die Einzelheiten des Reaktionsmechanismus sind noch ungeklärt. Bekannt ist, dass das beteiligte Enzym, die Nitrogenase, einen Co-Faktor benötigt, der mehrere eisen- und schwefelhaltige Einheiten enthält. Diese beiden Elemente kamen bereits in grauer Vorzeit ausgesprochen häufig auf der Erde vor und könnten an der urzeitlichen Entstehung von Ammoniak beteiligt gewesen sein.

Ein Forscherteam der Universität Jena und des Max-Planck-Instituts für Biogeochemie in Jena hat nun im Labor ausgetüftelt, wie eine solche urzeitliche Stickstoff-Fixierung ohne Enzym und bei Raumtemperatur und Atmosphärendruck ausgesehen haben könnte. Das Team um Günter Kreisel und Wolfgang Weigand leitet Stickstoff (N2) in eine wässrige Suspension von Eisensulfid (FeS) ein, wo er mit gelöstem Schwefelwasserstoff (H2S) zu Ammoniak (NH3) reagiert. Treibende Kraft ist die gleichzeitige Umsetzung des Eisensulfids zu Eisendisulfid (FeS2, Pyrit). Das Ganze funktioniert allerdings nur, wenn das eingesetzte Eisensulfid ganz frisch gefällt wurde. Mit handelsüblichem oder gealtertem Eisensulfid entsteht dagegen keine Spur von Ammoniak. Offenbar ist die spezielle, zerklüftete Oberfläche des frischen Eisensulfids der Erfolgsfaktor. Sie ist ein Sammelsurium verschiedener Eisen-Schwefel-Strukturen, von denen einige molekularen Stickstoff zu binden vermögen. Dadurch wird die Bindung zwischen den beiden Stickstoffatomen so geschwächt, dass Wasserstoff in positiv geladener Form sie angreifen und daran binden kann.

Kontakt:

Prof. Dr. W. Weigand
Institut für Anorganische und Analytische Chemie
Universität Jena
August-Bebel-Str. 2, D-07743 Jena
Fax: (+49) 3641-948102
E-mail: c8wewo@uni-jena.de

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201 – 606321
Fax: 06201 – 606331
E-Mail: angewandte@wiley-vch.de

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.uni-jena.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer